Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072661909> ?p ?o ?g. }
- W2072661909 endingPage "776" @default.
- W2072661909 startingPage "761" @default.
- W2072661909 abstract "Evolutionary algorithms (EAs) have shown to be promising in solving many-objective optimization problems (MaOPs), where the performance of these algorithms heavily depends on whether solutions that can accelerate convergence toward the Pareto front and maintaining a high degree of diversity will be selected from a set of nondominated solutions. In this paper, we propose a knee point-driven EA to solve MaOPs. Our basic idea is that knee points are naturally most preferred among nondominated solutions if no explicit user preferences are given. A bias toward the knee points in the nondominated solutions in the current population is shown to be an approximation of a bias toward a large hypervolume, thereby enhancing the convergence performance in many-objective optimization. In addition, as at most one solution will be identified as a knee point inside the neighborhood of each solution in the nondominated front, no additional diversity maintenance mechanisms need to be introduced in the proposed algorithm, considerably reducing the computational complexity compared to many existing multiobjective EAs for many-objective optimization. Experimental results on 16 test problems demonstrate the competitiveness of the proposed algorithm in terms of both solution quality and computational efficiency." @default.
- W2072661909 created "2016-06-24" @default.
- W2072661909 creator A5028634381 @default.
- W2072661909 creator A5032314861 @default.
- W2072661909 creator A5058755242 @default.
- W2072661909 date "2015-12-01" @default.
- W2072661909 modified "2023-10-17" @default.
- W2072661909 title "A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization" @default.
- W2072661909 cites W106819720 @default.
- W2072661909 cites W121448509 @default.
- W2072661909 cites W124905757 @default.
- W2072661909 cites W1484287363 @default.
- W2072661909 cites W1489264121 @default.
- W2072661909 cites W1519778441 @default.
- W2072661909 cites W1608317386 @default.
- W2072661909 cites W1833634424 @default.
- W2072661909 cites W1856614156 @default.
- W2072661909 cites W1968219458 @default.
- W2072661909 cites W1970424517 @default.
- W2072661909 cites W1985872004 @default.
- W2072661909 cites W2000151248 @default.
- W2072661909 cites W2009327948 @default.
- W2072661909 cites W2022485595 @default.
- W2072661909 cites W2025525377 @default.
- W2072661909 cites W2038420231 @default.
- W2072661909 cites W2059217302 @default.
- W2072661909 cites W2063375245 @default.
- W2072661909 cites W2071694551 @default.
- W2072661909 cites W2075356520 @default.
- W2072661909 cites W2091055889 @default.
- W2072661909 cites W2098071565 @default.
- W2072661909 cites W2108968575 @default.
- W2072661909 cites W2109865546 @default.
- W2072661909 cites W2115567818 @default.
- W2072661909 cites W2116555342 @default.
- W2072661909 cites W2126105956 @default.
- W2072661909 cites W2126273906 @default.
- W2072661909 cites W2128107191 @default.
- W2072661909 cites W2134152443 @default.
- W2072661909 cites W2136386226 @default.
- W2072661909 cites W2137583606 @default.
- W2072661909 cites W2139196352 @default.
- W2072661909 cites W2140886193 @default.
- W2072661909 cites W2143185749 @default.
- W2072661909 cites W2143245714 @default.
- W2072661909 cites W2143381319 @default.
- W2072661909 cites W2146134063 @default.
- W2072661909 cites W2147026702 @default.
- W2072661909 cites W2147926599 @default.
- W2072661909 cites W2149316175 @default.
- W2072661909 cites W2153654820 @default.
- W2072661909 cites W2154693991 @default.
- W2072661909 cites W2161819088 @default.
- W2072661909 cites W2167757882 @default.
- W2072661909 cites W2171996959 @default.
- W2072661909 cites W3037787799 @default.
- W2072661909 cites W4242952145 @default.
- W2072661909 doi "https://doi.org/10.1109/tevc.2014.2378512" @default.
- W2072661909 hasPublicationYear "2015" @default.
- W2072661909 type Work @default.
- W2072661909 sameAs 2072661909 @default.
- W2072661909 citedByCount "599" @default.
- W2072661909 countsByYear W20726619092015 @default.
- W2072661909 countsByYear W20726619092016 @default.
- W2072661909 countsByYear W20726619092017 @default.
- W2072661909 countsByYear W20726619092018 @default.
- W2072661909 countsByYear W20726619092019 @default.
- W2072661909 countsByYear W20726619092020 @default.
- W2072661909 countsByYear W20726619092021 @default.
- W2072661909 countsByYear W20726619092022 @default.
- W2072661909 countsByYear W20726619092023 @default.
- W2072661909 crossrefType "journal-article" @default.
- W2072661909 hasAuthorship W2072661909A5028634381 @default.
- W2072661909 hasAuthorship W2072661909A5032314861 @default.
- W2072661909 hasAuthorship W2072661909A5058755242 @default.
- W2072661909 hasConcept C105902424 @default.
- W2072661909 hasConcept C11413529 @default.
- W2072661909 hasConcept C126255220 @default.
- W2072661909 hasConcept C154945302 @default.
- W2072661909 hasConcept C159149176 @default.
- W2072661909 hasConcept C2524010 @default.
- W2072661909 hasConcept C28719098 @default.
- W2072661909 hasConcept C2987595161 @default.
- W2072661909 hasConcept C33923547 @default.
- W2072661909 hasConcept C41008148 @default.
- W2072661909 hasConcept C8880873 @default.
- W2072661909 hasConceptScore W2072661909C105902424 @default.
- W2072661909 hasConceptScore W2072661909C11413529 @default.
- W2072661909 hasConceptScore W2072661909C126255220 @default.
- W2072661909 hasConceptScore W2072661909C154945302 @default.
- W2072661909 hasConceptScore W2072661909C159149176 @default.
- W2072661909 hasConceptScore W2072661909C2524010 @default.
- W2072661909 hasConceptScore W2072661909C28719098 @default.
- W2072661909 hasConceptScore W2072661909C2987595161 @default.
- W2072661909 hasConceptScore W2072661909C33923547 @default.
- W2072661909 hasConceptScore W2072661909C41008148 @default.
- W2072661909 hasConceptScore W2072661909C8880873 @default.
- W2072661909 hasFunder F4320321001 @default.