Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072681002> ?p ?o ?g. }
- W2072681002 endingPage "174" @default.
- W2072681002 startingPage "169" @default.
- W2072681002 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 48:169-174 (2007) - doi:10.3354/ame048169 Effects of microcurrents in the boundary layer on the attachment of benthic heterotrophic nanoflagellates Marlene Willkomm1,2, Annette Schlüssel1, Ellen Reiz1, Hartmut Arndt1,* 1Department of General Ecology and Limnology, Zoological Institute, University of Cologne, 50923 Cologne, Germany 2Working Group Limnology, Institute of Ecology, Friedrich-Schiller-University Jena, 07745 Jena, Germany *Corresponding author. Email: hartmut.arndt@uni-koeln.de ABSTRACT: Surfaces in running water are covered by a boundary layer. Virtually nothing is known about the importance of water currents in the microenvironment of nanofauna. Many questions have been partially answered concerning the effect of surface topography on the hydrodynamics in the vicinity of macrofauna; however, investigations of the 2 to 5 µm water layer where nanoprotists live have been neglected. In the present study, we show that the flow velocity at a distance of a few micrometres from the substrate is high enough to be very effective regarding the detachment of nanoprotists. We analysed the impact of flow velocity (detachment from substrate) on 8 nanoflagellate taxa (Entosiphon, Cercomonas, Codonosiga, Anthophysa, Bodo, Neobodo, Apusomonas, Spumella) with different abilities to crawl and attach to the surface. A Plexiglas disc was used to generate a defined flow velocity on the surface of a Petri dish microcosm. Laminar flow in the boundary layer was found between 0 and 700 µm above the substratum. The effect of 4 different flow velocities on heterotrophic flagellates was investigated (0.3, 0.6, 0.9 and 1.2 m s1 at 5 mm above the substratum, corresponding to flow velocities of 0.001 to 0.004 m s1 at 10 µm above the substratum). The colourless, gliding euglenid Entosiphon sulcatum showed the highest resistance towards high flow velocities. Another species, the crawling cercomonad Cercomonas crassicauda, had the weakest attachment. Small changes in the micro-topography of the substrate (e.g. Ancylus shells) may significantly influence spatial distribution of nanoflagellates. KEY WORDS: Heterotrophic nanoflagellates · Boundary layer · Microcurrents · Biofilm · Flow velocity · Topography Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 48, No. 2. Online publication date: July 10, 2007 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2007 Inter-Research." @default.
- W2072681002 created "2016-06-24" @default.
- W2072681002 creator A5021080086 @default.
- W2072681002 creator A5030371779 @default.
- W2072681002 creator A5053394325 @default.
- W2072681002 creator A5056083321 @default.
- W2072681002 date "2007-07-10" @default.
- W2072681002 modified "2023-10-18" @default.
- W2072681002 title "Effects of microcurrents in the boundary layer on the attachment of benthic heterotrophic nanoflagellates" @default.
- W2072681002 cites W1539724799 @default.
- W2072681002 cites W1985365643 @default.
- W2072681002 cites W1986451010 @default.
- W2072681002 cites W1987774862 @default.
- W2072681002 cites W1988456043 @default.
- W2072681002 cites W2005143673 @default.
- W2072681002 cites W2005916697 @default.
- W2072681002 cites W2030489140 @default.
- W2072681002 cites W2047156576 @default.
- W2072681002 cites W2048266952 @default.
- W2072681002 cites W2053723763 @default.
- W2072681002 cites W2056864106 @default.
- W2072681002 cites W2066697902 @default.
- W2072681002 cites W2071173575 @default.
- W2072681002 cites W2111638364 @default.
- W2072681002 cites W2113086986 @default.
- W2072681002 cites W2114145137 @default.
- W2072681002 cites W2118709590 @default.
- W2072681002 cites W2131227284 @default.
- W2072681002 cites W2153869826 @default.
- W2072681002 cites W2167637876 @default.
- W2072681002 cites W2283201434 @default.
- W2072681002 cites W2322088753 @default.
- W2072681002 cites W2482410097 @default.
- W2072681002 cites W2771462711 @default.
- W2072681002 cites W2911894360 @default.
- W2072681002 cites W434528043 @default.
- W2072681002 doi "https://doi.org/10.3354/ame048169" @default.
- W2072681002 hasPublicationYear "2007" @default.
- W2072681002 type Work @default.
- W2072681002 sameAs 2072681002 @default.
- W2072681002 citedByCount "8" @default.
- W2072681002 countsByYear W20726810022014 @default.
- W2072681002 countsByYear W20726810022016 @default.
- W2072681002 countsByYear W20726810022017 @default.
- W2072681002 countsByYear W20726810022020 @default.
- W2072681002 crossrefType "journal-article" @default.
- W2072681002 hasAuthorship W2072681002A5021080086 @default.
- W2072681002 hasAuthorship W2072681002A5030371779 @default.
- W2072681002 hasAuthorship W2072681002A5053394325 @default.
- W2072681002 hasAuthorship W2072681002A5056083321 @default.
- W2072681002 hasBestOaLocation W20726810021 @default.
- W2072681002 hasConcept C111368507 @default.
- W2072681002 hasConcept C111603439 @default.
- W2072681002 hasConcept C121332964 @default.
- W2072681002 hasConcept C127313418 @default.
- W2072681002 hasConcept C187320778 @default.
- W2072681002 hasConcept C18903297 @default.
- W2072681002 hasConcept C189047708 @default.
- W2072681002 hasConcept C2777289219 @default.
- W2072681002 hasConcept C2779669040 @default.
- W2072681002 hasConcept C39432304 @default.
- W2072681002 hasConcept C523546767 @default.
- W2072681002 hasConcept C54355233 @default.
- W2072681002 hasConcept C57879066 @default.
- W2072681002 hasConcept C7012322 @default.
- W2072681002 hasConcept C76886044 @default.
- W2072681002 hasConcept C83042747 @default.
- W2072681002 hasConcept C86803240 @default.
- W2072681002 hasConcept C89944131 @default.
- W2072681002 hasConceptScore W2072681002C111368507 @default.
- W2072681002 hasConceptScore W2072681002C111603439 @default.
- W2072681002 hasConceptScore W2072681002C121332964 @default.
- W2072681002 hasConceptScore W2072681002C127313418 @default.
- W2072681002 hasConceptScore W2072681002C187320778 @default.
- W2072681002 hasConceptScore W2072681002C18903297 @default.
- W2072681002 hasConceptScore W2072681002C189047708 @default.
- W2072681002 hasConceptScore W2072681002C2777289219 @default.
- W2072681002 hasConceptScore W2072681002C2779669040 @default.
- W2072681002 hasConceptScore W2072681002C39432304 @default.
- W2072681002 hasConceptScore W2072681002C523546767 @default.
- W2072681002 hasConceptScore W2072681002C54355233 @default.
- W2072681002 hasConceptScore W2072681002C57879066 @default.
- W2072681002 hasConceptScore W2072681002C7012322 @default.
- W2072681002 hasConceptScore W2072681002C76886044 @default.
- W2072681002 hasConceptScore W2072681002C83042747 @default.
- W2072681002 hasConceptScore W2072681002C86803240 @default.
- W2072681002 hasConceptScore W2072681002C89944131 @default.
- W2072681002 hasLocation W20726810021 @default.
- W2072681002 hasOpenAccess W2072681002 @default.
- W2072681002 hasPrimaryLocation W20726810021 @default.
- W2072681002 hasRelatedWork W1976064617 @default.
- W2072681002 hasRelatedWork W2028489672 @default.
- W2072681002 hasRelatedWork W2035152764 @default.
- W2072681002 hasRelatedWork W2052455352 @default.
- W2072681002 hasRelatedWork W2056204988 @default.
- W2072681002 hasRelatedWork W2062386329 @default.
- W2072681002 hasRelatedWork W2070691121 @default.
- W2072681002 hasRelatedWork W2144339042 @default.