Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072873181> ?p ?o ?g. }
- W2072873181 endingPage "110" @default.
- W2072873181 startingPage "98" @default.
- W2072873181 abstract "A modified version of the dynamically dimensioned search (MDDS) is introduced for automatic calibration of watershed simulation models. The distinguishing feature of the MDDS is that the algorithm makes full use of sensitivity information in the optimization procedure. The Latin hypercube one-factor-at-a-time (LH-OAT) technique is used to calculate the sensitivity information of every parameter in the model. The performance of the MDDS is compared to that of the dynamically dimensioned search (DDS), the DDS identifying only the most sensitive parameters, and the shuffled complex evolution (SCE) method, respectively, for calibration of the easy distributed hydrological model (EasyDHM). The comparisons range from 500 to 5000 model evaluations per optimization trial. The results show the following: the MDDS algorithm outperforms the DDS algorithm, the DDS algorithm identifying the most sensitive parameters, and the SCE algorithm within a specified maximum number of function evaluations (fewer than 5000); the MDDS algorithm shows robustness compared with the DDS algorithm when the maximum number of model evaluations is less than 2500; the advantages of the MDDS algorithm are more obvious for a high-dimensional distributed hydrological model, such as the EasyDHM model; and the optimization results from the MDDS algorithm are not very sensitive to either the variance (between 0.3 and 1) for randn′ used in the MDDS algorithm or the number of strata used in the Latin hypercube (LH) sampling." @default.
- W2072873181 created "2016-06-24" @default.
- W2072873181 creator A5008491549 @default.
- W2072873181 creator A5019848399 @default.
- W2072873181 creator A5019965181 @default.
- W2072873181 creator A5025756726 @default.
- W2072873181 creator A5040180408 @default.
- W2072873181 creator A5042315823 @default.
- W2072873181 creator A5056101043 @default.
- W2072873181 creator A5091488899 @default.
- W2072873181 date "2014-02-01" @default.
- W2072873181 modified "2023-10-16" @default.
- W2072873181 title "Parameter optimization of distributed hydrological model with a modified dynamically dimensioned search algorithm" @default.
- W2072873181 cites W1490048247 @default.
- W2072873181 cites W1579788486 @default.
- W2072873181 cites W1651775740 @default.
- W2072873181 cites W1938086845 @default.
- W2072873181 cites W1967069725 @default.
- W2072873181 cites W1967574365 @default.
- W2072873181 cites W1971236297 @default.
- W2072873181 cites W1981130534 @default.
- W2072873181 cites W1981320000 @default.
- W2072873181 cites W1981618598 @default.
- W2072873181 cites W1995429621 @default.
- W2072873181 cites W1998027527 @default.
- W2072873181 cites W1999310382 @default.
- W2072873181 cites W2002373064 @default.
- W2072873181 cites W2016952331 @default.
- W2072873181 cites W2017461955 @default.
- W2072873181 cites W2018787487 @default.
- W2072873181 cites W2033904036 @default.
- W2072873181 cites W2037460094 @default.
- W2072873181 cites W2041202986 @default.
- W2072873181 cites W2045421201 @default.
- W2072873181 cites W2052067198 @default.
- W2072873181 cites W2055500990 @default.
- W2072873181 cites W2058481607 @default.
- W2072873181 cites W2058998445 @default.
- W2072873181 cites W2060842690 @default.
- W2072873181 cites W2061010108 @default.
- W2072873181 cites W2065082786 @default.
- W2072873181 cites W2085118154 @default.
- W2072873181 cites W2096322499 @default.
- W2072873181 cites W2122315938 @default.
- W2072873181 cites W2126171847 @default.
- W2072873181 cites W2127188643 @default.
- W2072873181 cites W2127266322 @default.
- W2072873181 cites W2133837084 @default.
- W2072873181 cites W2135393877 @default.
- W2072873181 cites W2141753814 @default.
- W2072873181 cites W2149071528 @default.
- W2072873181 cites W2160773748 @default.
- W2072873181 cites W2168490566 @default.
- W2072873181 cites W2169616177 @default.
- W2072873181 cites W999207820 @default.
- W2072873181 doi "https://doi.org/10.1016/j.envsoft.2013.09.028" @default.
- W2072873181 hasPublicationYear "2014" @default.
- W2072873181 type Work @default.
- W2072873181 sameAs 2072873181 @default.
- W2072873181 citedByCount "20" @default.
- W2072873181 countsByYear W20728731812014 @default.
- W2072873181 countsByYear W20728731812015 @default.
- W2072873181 countsByYear W20728731812016 @default.
- W2072873181 countsByYear W20728731812017 @default.
- W2072873181 countsByYear W20728731812018 @default.
- W2072873181 countsByYear W20728731812019 @default.
- W2072873181 countsByYear W20728731812020 @default.
- W2072873181 countsByYear W20728731812021 @default.
- W2072873181 countsByYear W20728731812022 @default.
- W2072873181 crossrefType "journal-article" @default.
- W2072873181 hasAuthorship W2072873181A5008491549 @default.
- W2072873181 hasAuthorship W2072873181A5019848399 @default.
- W2072873181 hasAuthorship W2072873181A5019965181 @default.
- W2072873181 hasAuthorship W2072873181A5025756726 @default.
- W2072873181 hasAuthorship W2072873181A5040180408 @default.
- W2072873181 hasAuthorship W2072873181A5042315823 @default.
- W2072873181 hasAuthorship W2072873181A5056101043 @default.
- W2072873181 hasAuthorship W2072873181A5091488899 @default.
- W2072873181 hasConcept C104317684 @default.
- W2072873181 hasConcept C105795698 @default.
- W2072873181 hasConcept C11413529 @default.
- W2072873181 hasConcept C121955636 @default.
- W2072873181 hasConcept C124101348 @default.
- W2072873181 hasConcept C126255220 @default.
- W2072873181 hasConcept C127413603 @default.
- W2072873181 hasConcept C144133560 @default.
- W2072873181 hasConcept C165838908 @default.
- W2072873181 hasConcept C173608175 @default.
- W2072873181 hasConcept C185592680 @default.
- W2072873181 hasConcept C19499675 @default.
- W2072873181 hasConcept C196083921 @default.
- W2072873181 hasConcept C20820323 @default.
- W2072873181 hasConcept C21200559 @default.
- W2072873181 hasConcept C24326235 @default.
- W2072873181 hasConcept C2987595161 @default.
- W2072873181 hasConcept C33923547 @default.
- W2072873181 hasConcept C41008148 @default.
- W2072873181 hasConcept C50820777 @default.