Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072880242> ?p ?o ?g. }
- W2072880242 endingPage "62" @default.
- W2072880242 startingPage "53" @default.
- W2072880242 abstract "Abstract Flux declines versus time (t) during crossflow microfiltration of a mixture that contains phosphate and fly ash, were modeled and compared by using an artificial neural network (ANN) and Koltuniewicz's method (KM) at different conditions of fly ash dosages (CFA), PO4 concentrations ( C P O 4 ), transmembrane pressures (ΔP) and two membrane types (MT). Two different neural network (NN) architectures (NN1, NN2) that gave the best prediction of flux values were established for data analyses. KM was also taken as K1 and K2 to compare the predictions of both models at the same experiments separately. It was shown that all of the experimental conditions can be modeled as a whole or separately, and the model results obtained for one experiment can be used for others at the same conditions with an acceptable correlation level by NNs while not with Koltuniewicz. The correlation values were found as 0.991 and 0.988 for NN1 and NN2, and 0.972 and 0.973 for K1 and K2, respectively. These results are put forward to show that ANN results fit better to fluxes than KM according to correlation values (r2). The normalized flux values obtained from K1 and K2, smaller than 0.4, are in the range between −30 and 40% variations, whereas the most of N1 and N2 variations are in the range of ±20%. The error distributions of data used for NN1 and NN2 were found to be 82 and 79%, while for K1 and K2 was calculated to be 51 and 52%, in the range of ±10% error, respectively. The contribution of t variable to flux values provided by NNs was determined in an important level at the range of 40–50% due to increasing in membrane fouling by the time. The contributions of ΔP, CFA and C P O 4 variables were found in the range of 15–25%. The affect of MT was determined at a lower level about for 4%. As a conclusion, using elaborated ANN modeling, it is able to predict the permeate flux at a high accuracy from process variables such as transmembrane pressure, various concentrations of feed solution and membrane type and contributions of process variables to the permeate flux value." @default.
- W2072880242 created "2016-06-24" @default.
- W2072880242 creator A5003175086 @default.
- W2072880242 creator A5009875645 @default.
- W2072880242 creator A5012835539 @default.
- W2072880242 date "2005-02-01" @default.
- W2072880242 modified "2023-10-17" @default.
- W2072880242 title "Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal" @default.
- W2072880242 cites W1496974748 @default.
- W2072880242 cites W1498436455 @default.
- W2072880242 cites W1557873222 @default.
- W2072880242 cites W1971347939 @default.
- W2072880242 cites W1974410710 @default.
- W2072880242 cites W1976842708 @default.
- W2072880242 cites W1985160174 @default.
- W2072880242 cites W1990081915 @default.
- W2072880242 cites W1992675018 @default.
- W2072880242 cites W1993358867 @default.
- W2072880242 cites W1995341919 @default.
- W2072880242 cites W1998442441 @default.
- W2072880242 cites W2005085549 @default.
- W2072880242 cites W2006869018 @default.
- W2072880242 cites W2012076947 @default.
- W2072880242 cites W2017793918 @default.
- W2072880242 cites W2018198710 @default.
- W2072880242 cites W2034864058 @default.
- W2072880242 cites W2035579004 @default.
- W2072880242 cites W2037487542 @default.
- W2072880242 cites W2048401737 @default.
- W2072880242 cites W2054677214 @default.
- W2072880242 cites W2056808208 @default.
- W2072880242 cites W2061672550 @default.
- W2072880242 cites W2065572909 @default.
- W2072880242 cites W2071975690 @default.
- W2072880242 cites W2089850065 @default.
- W2072880242 cites W2093430760 @default.
- W2072880242 cites W2094184581 @default.
- W2072880242 cites W2121508650 @default.
- W2072880242 cites W2170423728 @default.
- W2072880242 doi "https://doi.org/10.1016/j.memsci.2004.07.036" @default.
- W2072880242 hasPublicationYear "2005" @default.
- W2072880242 type Work @default.
- W2072880242 sameAs 2072880242 @default.
- W2072880242 citedByCount "65" @default.
- W2072880242 countsByYear W20728802422012 @default.
- W2072880242 countsByYear W20728802422013 @default.
- W2072880242 countsByYear W20728802422014 @default.
- W2072880242 countsByYear W20728802422015 @default.
- W2072880242 countsByYear W20728802422016 @default.
- W2072880242 countsByYear W20728802422017 @default.
- W2072880242 countsByYear W20728802422018 @default.
- W2072880242 countsByYear W20728802422019 @default.
- W2072880242 countsByYear W20728802422020 @default.
- W2072880242 countsByYear W20728802422021 @default.
- W2072880242 countsByYear W20728802422022 @default.
- W2072880242 crossrefType "journal-article" @default.
- W2072880242 hasAuthorship W2072880242A5003175086 @default.
- W2072880242 hasAuthorship W2072880242A5009875645 @default.
- W2072880242 hasAuthorship W2072880242A5012835539 @default.
- W2072880242 hasConcept C127413603 @default.
- W2072880242 hasConcept C154945302 @default.
- W2072880242 hasConcept C178790620 @default.
- W2072880242 hasConcept C185592680 @default.
- W2072880242 hasConcept C192562407 @default.
- W2072880242 hasConcept C2777132085 @default.
- W2072880242 hasConcept C39432304 @default.
- W2072880242 hasConcept C41008148 @default.
- W2072880242 hasConcept C41625074 @default.
- W2072880242 hasConcept C42360764 @default.
- W2072880242 hasConcept C43617362 @default.
- W2072880242 hasConcept C48314217 @default.
- W2072880242 hasConcept C50644808 @default.
- W2072880242 hasConcept C55493867 @default.
- W2072880242 hasConcept C68709404 @default.
- W2072880242 hasConceptScore W2072880242C127413603 @default.
- W2072880242 hasConceptScore W2072880242C154945302 @default.
- W2072880242 hasConceptScore W2072880242C178790620 @default.
- W2072880242 hasConceptScore W2072880242C185592680 @default.
- W2072880242 hasConceptScore W2072880242C192562407 @default.
- W2072880242 hasConceptScore W2072880242C2777132085 @default.
- W2072880242 hasConceptScore W2072880242C39432304 @default.
- W2072880242 hasConceptScore W2072880242C41008148 @default.
- W2072880242 hasConceptScore W2072880242C41625074 @default.
- W2072880242 hasConceptScore W2072880242C42360764 @default.
- W2072880242 hasConceptScore W2072880242C43617362 @default.
- W2072880242 hasConceptScore W2072880242C48314217 @default.
- W2072880242 hasConceptScore W2072880242C50644808 @default.
- W2072880242 hasConceptScore W2072880242C55493867 @default.
- W2072880242 hasConceptScore W2072880242C68709404 @default.
- W2072880242 hasIssue "1-2" @default.
- W2072880242 hasLocation W20728802421 @default.
- W2072880242 hasOpenAccess W2072880242 @default.
- W2072880242 hasPrimaryLocation W20728802421 @default.
- W2072880242 hasRelatedWork W1869906454 @default.
- W2072880242 hasRelatedWork W1973136110 @default.
- W2072880242 hasRelatedWork W2033391218 @default.
- W2072880242 hasRelatedWork W2039686439 @default.
- W2072880242 hasRelatedWork W2048608928 @default.