Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072883241> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2072883241 abstract "Bioinformatic predictions of neuropeptides resulting from enzymatic cleavages of precursors enable a range of follow-up studies that are aided by accurate predictions. A comparative study of the performance of complementary cleavage prediction models has been undertaken. Binary logistic and artificial neural network (ANN) models were created using various strategies and trained and tested on bovine and rat precursors with experimental cleavage information. Multiple criteria were used to compare 4 logistic regression models with varying properties and 8 ANN with varying structures. All models had high specificity (>90%) and sensitivity ranged from 68% to 100%. ANN based on well-represented amino acid locations performed similarly or slightly worse than networks based on all amino acid locations. Logistic parameter estimates aided in the identification of amino acids associated with cleavage. No model was superior across data sets and thus, prediction of neuropeptides should rely on multiple model specifications and comprehensive training data sets." @default.
- W2072883241 created "2016-06-24" @default.
- W2072883241 creator A5001450490 @default.
- W2072883241 creator A5006238710 @default.
- W2072883241 creator A5013387907 @default.
- W2072883241 creator A5058471655 @default.
- W2072883241 date "2007-11-01" @default.
- W2072883241 modified "2023-10-18" @default.
- W2072883241 title "Comparative analysis of binary logistic regression to artificial neural networks in predicting precursor sequence cleavage" @default.
- W2072883241 cites W1493790738 @default.
- W2072883241 cites W1494899984 @default.
- W2072883241 cites W2006946696 @default.
- W2072883241 cites W2007463705 @default.
- W2072883241 cites W2015936607 @default.
- W2072883241 cites W2022865996 @default.
- W2072883241 cites W2033340247 @default.
- W2072883241 cites W2058752584 @default.
- W2072883241 cites W2066326281 @default.
- W2072883241 cites W2085208668 @default.
- W2072883241 cites W2107432340 @default.
- W2072883241 cites W2161746138 @default.
- W2072883241 doi "https://doi.org/10.1109/bibmw.2007.4425407" @default.
- W2072883241 hasPublicationYear "2007" @default.
- W2072883241 type Work @default.
- W2072883241 sameAs 2072883241 @default.
- W2072883241 citedByCount "0" @default.
- W2072883241 crossrefType "proceedings-article" @default.
- W2072883241 hasAuthorship W2072883241A5001450490 @default.
- W2072883241 hasAuthorship W2072883241A5006238710 @default.
- W2072883241 hasAuthorship W2072883241A5013387907 @default.
- W2072883241 hasAuthorship W2072883241A5058471655 @default.
- W2072883241 hasConcept C105795698 @default.
- W2072883241 hasConcept C119857082 @default.
- W2072883241 hasConcept C151730666 @default.
- W2072883241 hasConcept C151956035 @default.
- W2072883241 hasConcept C154945302 @default.
- W2072883241 hasConcept C175156509 @default.
- W2072883241 hasConcept C33923547 @default.
- W2072883241 hasConcept C41008148 @default.
- W2072883241 hasConcept C43369102 @default.
- W2072883241 hasConcept C48372109 @default.
- W2072883241 hasConcept C50644808 @default.
- W2072883241 hasConcept C83546350 @default.
- W2072883241 hasConcept C86803240 @default.
- W2072883241 hasConcept C94375191 @default.
- W2072883241 hasConceptScore W2072883241C105795698 @default.
- W2072883241 hasConceptScore W2072883241C119857082 @default.
- W2072883241 hasConceptScore W2072883241C151730666 @default.
- W2072883241 hasConceptScore W2072883241C151956035 @default.
- W2072883241 hasConceptScore W2072883241C154945302 @default.
- W2072883241 hasConceptScore W2072883241C175156509 @default.
- W2072883241 hasConceptScore W2072883241C33923547 @default.
- W2072883241 hasConceptScore W2072883241C41008148 @default.
- W2072883241 hasConceptScore W2072883241C43369102 @default.
- W2072883241 hasConceptScore W2072883241C48372109 @default.
- W2072883241 hasConceptScore W2072883241C50644808 @default.
- W2072883241 hasConceptScore W2072883241C83546350 @default.
- W2072883241 hasConceptScore W2072883241C86803240 @default.
- W2072883241 hasConceptScore W2072883241C94375191 @default.
- W2072883241 hasLocation W20728832411 @default.
- W2072883241 hasOpenAccess W2072883241 @default.
- W2072883241 hasPrimaryLocation W20728832411 @default.
- W2072883241 hasRelatedWork W11765363 @default.
- W2072883241 hasRelatedWork W1978450727 @default.
- W2072883241 hasRelatedWork W2033914206 @default.
- W2072883241 hasRelatedWork W2046077695 @default.
- W2072883241 hasRelatedWork W2110459882 @default.
- W2072883241 hasRelatedWork W2163831990 @default.
- W2072883241 hasRelatedWork W2386387936 @default.
- W2072883241 hasRelatedWork W2407295277 @default.
- W2072883241 hasRelatedWork W3003836766 @default.
- W2072883241 hasRelatedWork W3107474891 @default.
- W2072883241 isParatext "false" @default.
- W2072883241 isRetracted "false" @default.
- W2072883241 magId "2072883241" @default.
- W2072883241 workType "article" @default.