Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072903423> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2072903423 abstract "Graphs are a powerful way to model interactions and relationships in data from a wide variety of application domains. In this setting, entities represented by vertices at the 'center' of the graph are often more important than those associated with vertices on the 'fringes'. For example, central nodes tend to be more critical in the spread of information or disease and play an important role in clustering/community formation. Identifying such 'core' vertices has recently received additional attention in the context of network experiments, which analyze the response when a random subset of vertices are exposed to a treatment (e.g. Inoculation, free product samples, etc). Specifically, the likelihood of having many central vertices in any exposure subset can have a significant impact on the experiment. We focus on using k-cores and core numbers to measure the extent to which a vertex is central in a graph. Existing algorithms for computing the core number of a vertex require the entire graph as input, an unrealistic scenario in many real world applications. Moreover, in the context of network experiments, the sub graph induced by the treated vertices is only known in a probabilistic sense. We introduce a new method for estimating the core number based only on the properties of the graph within a region of radius δ around the vertex, and prove an asymptotic error bound of our estimator on random graphs. Further, we empirically validate the accuracy of our estimator for small values of δ on a representative corpus of real data sets. Finally, we evaluate the impact of improved local estimation on an open problem in network experimentation posed by Ugander et al." @default.
- W2072903423 created "2016-06-24" @default.
- W2072903423 creator A5052381956 @default.
- W2072903423 creator A5089650657 @default.
- W2072903423 date "2014-12-01" @default.
- W2072903423 modified "2023-09-27" @default.
- W2072903423 title "Locally Estimating Core Numbers" @default.
- W2072903423 cites W1971717360 @default.
- W2072903423 cites W2048267719 @default.
- W2072903423 cites W2065663455 @default.
- W2072903423 cites W2071864549 @default.
- W2072903423 cites W2094224753 @default.
- W2072903423 cites W2112406046 @default.
- W2072903423 cites W2133131640 @default.
- W2072903423 cites W2134695286 @default.
- W2072903423 cites W2136850043 @default.
- W2072903423 cites W2142599626 @default.
- W2072903423 cites W2148870381 @default.
- W2072903423 cites W2150256170 @default.
- W2072903423 cites W2152886806 @default.
- W2072903423 doi "https://doi.org/10.1109/icdm.2014.136" @default.
- W2072903423 hasPublicationYear "2014" @default.
- W2072903423 type Work @default.
- W2072903423 sameAs 2072903423 @default.
- W2072903423 citedByCount "26" @default.
- W2072903423 countsByYear W20729034232015 @default.
- W2072903423 countsByYear W20729034232016 @default.
- W2072903423 countsByYear W20729034232017 @default.
- W2072903423 countsByYear W20729034232018 @default.
- W2072903423 countsByYear W20729034232019 @default.
- W2072903423 countsByYear W20729034232021 @default.
- W2072903423 countsByYear W20729034232022 @default.
- W2072903423 crossrefType "proceedings-article" @default.
- W2072903423 hasAuthorship W2072903423A5052381956 @default.
- W2072903423 hasAuthorship W2072903423A5089650657 @default.
- W2072903423 hasBestOaLocation W20729034232 @default.
- W2072903423 hasConcept C114614502 @default.
- W2072903423 hasConcept C132525143 @default.
- W2072903423 hasConcept C134306372 @default.
- W2072903423 hasConcept C154945302 @default.
- W2072903423 hasConcept C22047676 @default.
- W2072903423 hasConcept C33923547 @default.
- W2072903423 hasConcept C41008148 @default.
- W2072903423 hasConcept C47458327 @default.
- W2072903423 hasConcept C73555534 @default.
- W2072903423 hasConcept C77553402 @default.
- W2072903423 hasConcept C80444323 @default.
- W2072903423 hasConcept C80899671 @default.
- W2072903423 hasConceptScore W2072903423C114614502 @default.
- W2072903423 hasConceptScore W2072903423C132525143 @default.
- W2072903423 hasConceptScore W2072903423C134306372 @default.
- W2072903423 hasConceptScore W2072903423C154945302 @default.
- W2072903423 hasConceptScore W2072903423C22047676 @default.
- W2072903423 hasConceptScore W2072903423C33923547 @default.
- W2072903423 hasConceptScore W2072903423C41008148 @default.
- W2072903423 hasConceptScore W2072903423C47458327 @default.
- W2072903423 hasConceptScore W2072903423C73555534 @default.
- W2072903423 hasConceptScore W2072903423C77553402 @default.
- W2072903423 hasConceptScore W2072903423C80444323 @default.
- W2072903423 hasConceptScore W2072903423C80899671 @default.
- W2072903423 hasLocation W20729034231 @default.
- W2072903423 hasLocation W20729034232 @default.
- W2072903423 hasLocation W20729034233 @default.
- W2072903423 hasOpenAccess W2072903423 @default.
- W2072903423 hasPrimaryLocation W20729034231 @default.
- W2072903423 hasRelatedWork W1719252778 @default.
- W2072903423 hasRelatedWork W1976377034 @default.
- W2072903423 hasRelatedWork W2053209358 @default.
- W2072903423 hasRelatedWork W2056380167 @default.
- W2072903423 hasRelatedWork W2059680011 @default.
- W2072903423 hasRelatedWork W2091040339 @default.
- W2072903423 hasRelatedWork W2383129606 @default.
- W2072903423 hasRelatedWork W2905721092 @default.
- W2072903423 hasRelatedWork W2919085443 @default.
- W2072903423 hasRelatedWork W4291863732 @default.
- W2072903423 isParatext "false" @default.
- W2072903423 isRetracted "false" @default.
- W2072903423 magId "2072903423" @default.
- W2072903423 workType "article" @default.