Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072933579> ?p ?o ?g. }
- W2072933579 endingPage "977" @default.
- W2072933579 startingPage "968" @default.
- W2072933579 abstract "Purpose: To evaluate the accuracy of previously reported superposition/convolution (SC) dosimetric results by comparing with Monte Carlo (MC) dose calculations for head-and-neck intensity-modulated radiation therapy (IMRT) patients treated with the simultaneous integrated boost technique. Methods and Materials: Thirty-one plans from 24 patients previously treated on a phase I/II head-and-neck squamous cell carcinoma simultaneous integrated boost IMRT protocol were used. Clinical dose distributions, computed with an SC algorithm, were recomputed using an EGS4-based MC algorithm. Phantom-based dosimetry quantified the fluence prediction accuracy of each algorithm. Dose–volume indices were used to compare patient dose distributions. Results and Discussion: The MC algorithm predicts flat-phantom measurements better than the SC algorithm. Average patient dose indices agreed within 2.5% of the local dose for targets; 5.0% for parotids; and 1.9% for cord and brainstem. However, only 1 of 31 plans agreed within 3% for all indices; 4 of 31 agreed within 5%. In terms of the prescription dose, 4 of 31 plans agreed within 3% for all indices, whereas 28 of 31 agreed within 5%. Conclusions: Average SC-computed doses agreed with MC results in the patient geometry; however deviations >5% were common. The fluence modulation prediction is likely the major source of the dose discrepancy. The observed dose deviations can impact dose escalation protocols, because they would result in shifting patients to higher dose levels. Purpose: To evaluate the accuracy of previously reported superposition/convolution (SC) dosimetric results by comparing with Monte Carlo (MC) dose calculations for head-and-neck intensity-modulated radiation therapy (IMRT) patients treated with the simultaneous integrated boost technique. Methods and Materials: Thirty-one plans from 24 patients previously treated on a phase I/II head-and-neck squamous cell carcinoma simultaneous integrated boost IMRT protocol were used. Clinical dose distributions, computed with an SC algorithm, were recomputed using an EGS4-based MC algorithm. Phantom-based dosimetry quantified the fluence prediction accuracy of each algorithm. Dose–volume indices were used to compare patient dose distributions. Results and Discussion: The MC algorithm predicts flat-phantom measurements better than the SC algorithm. Average patient dose indices agreed within 2.5% of the local dose for targets; 5.0% for parotids; and 1.9% for cord and brainstem. However, only 1 of 31 plans agreed within 3% for all indices; 4 of 31 agreed within 5%. In terms of the prescription dose, 4 of 31 plans agreed within 3% for all indices, whereas 28 of 31 agreed within 5%. Conclusions: Average SC-computed doses agreed with MC results in the patient geometry; however deviations >5% were common. The fluence modulation prediction is likely the major source of the dose discrepancy. The observed dose deviations can impact dose escalation protocols, because they would result in shifting patients to higher dose levels." @default.
- W2072933579 created "2016-06-24" @default.
- W2072933579 creator A5005969181 @default.
- W2072933579 creator A5012356605 @default.
- W2072933579 creator A5015195004 @default.
- W2072933579 creator A5016346151 @default.
- W2072933579 creator A5027323565 @default.
- W2072933579 creator A5032752677 @default.
- W2072933579 creator A5047713651 @default.
- W2072933579 creator A5047946726 @default.
- W2072933579 date "2006-03-01" @default.
- W2072933579 modified "2023-09-24" @default.
- W2072933579 title "Monte Carlo–based dosimetry of head-and-neck patients treated with SIB-IMRT" @default.
- W2072933579 cites W173740309 @default.
- W2072933579 cites W1967121735 @default.
- W2072933579 cites W1971548135 @default.
- W2072933579 cites W1973073129 @default.
- W2072933579 cites W1976996553 @default.
- W2072933579 cites W1977764193 @default.
- W2072933579 cites W1979305570 @default.
- W2072933579 cites W1983273276 @default.
- W2072933579 cites W1983409544 @default.
- W2072933579 cites W1983843138 @default.
- W2072933579 cites W1984222944 @default.
- W2072933579 cites W1987551106 @default.
- W2072933579 cites W1987571731 @default.
- W2072933579 cites W1990704938 @default.
- W2072933579 cites W1991566473 @default.
- W2072933579 cites W1995678696 @default.
- W2072933579 cites W1999265227 @default.
- W2072933579 cites W1999746589 @default.
- W2072933579 cites W2010934771 @default.
- W2072933579 cites W2014068158 @default.
- W2072933579 cites W2030442960 @default.
- W2072933579 cites W2036945320 @default.
- W2072933579 cites W2037716707 @default.
- W2072933579 cites W2038719581 @default.
- W2072933579 cites W2042740597 @default.
- W2072933579 cites W2049807612 @default.
- W2072933579 cites W2054946224 @default.
- W2072933579 cites W2072793624 @default.
- W2072933579 cites W2077037649 @default.
- W2072933579 cites W2080581240 @default.
- W2072933579 cites W2083629503 @default.
- W2072933579 cites W2085796495 @default.
- W2072933579 cites W2091361931 @default.
- W2072933579 cites W2091608575 @default.
- W2072933579 cites W2094955118 @default.
- W2072933579 cites W2104383911 @default.
- W2072933579 cites W2134009835 @default.
- W2072933579 cites W2138237756 @default.
- W2072933579 cites W2139389882 @default.
- W2072933579 cites W2140087763 @default.
- W2072933579 cites W2145362479 @default.
- W2072933579 cites W2152432677 @default.
- W2072933579 cites W2165876721 @default.
- W2072933579 cites W2355419393 @default.
- W2072933579 cites W278452154 @default.
- W2072933579 cites W4211035194 @default.
- W2072933579 doi "https://doi.org/10.1016/j.ijrobp.2005.09.049" @default.
- W2072933579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16458782" @default.
- W2072933579 hasPublicationYear "2006" @default.
- W2072933579 type Work @default.
- W2072933579 sameAs 2072933579 @default.
- W2072933579 citedByCount "36" @default.
- W2072933579 countsByYear W20729335792013 @default.
- W2072933579 countsByYear W20729335792014 @default.
- W2072933579 countsByYear W20729335792015 @default.
- W2072933579 countsByYear W20729335792017 @default.
- W2072933579 countsByYear W20729335792019 @default.
- W2072933579 countsByYear W20729335792020 @default.
- W2072933579 countsByYear W20729335792021 @default.
- W2072933579 countsByYear W20729335792022 @default.
- W2072933579 crossrefType "journal-article" @default.
- W2072933579 hasAuthorship W2072933579A5005969181 @default.
- W2072933579 hasAuthorship W2072933579A5012356605 @default.
- W2072933579 hasAuthorship W2072933579A5015195004 @default.
- W2072933579 hasAuthorship W2072933579A5016346151 @default.
- W2072933579 hasAuthorship W2072933579A5027323565 @default.
- W2072933579 hasAuthorship W2072933579A5032752677 @default.
- W2072933579 hasAuthorship W2072933579A5047713651 @default.
- W2072933579 hasAuthorship W2072933579A5047946726 @default.
- W2072933579 hasConcept C104293457 @default.
- W2072933579 hasConcept C105795698 @default.
- W2072933579 hasConcept C126838900 @default.
- W2072933579 hasConcept C19499675 @default.
- W2072933579 hasConcept C201645570 @default.
- W2072933579 hasConcept C2989005 @default.
- W2072933579 hasConcept C33923547 @default.
- W2072933579 hasConcept C509974204 @default.
- W2072933579 hasConcept C71924100 @default.
- W2072933579 hasConcept C75088862 @default.
- W2072933579 hasConceptScore W2072933579C104293457 @default.
- W2072933579 hasConceptScore W2072933579C105795698 @default.
- W2072933579 hasConceptScore W2072933579C126838900 @default.
- W2072933579 hasConceptScore W2072933579C19499675 @default.
- W2072933579 hasConceptScore W2072933579C201645570 @default.
- W2072933579 hasConceptScore W2072933579C2989005 @default.