Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072973192> ?p ?o ?g. }
- W2072973192 endingPage "556" @default.
- W2072973192 startingPage "546" @default.
- W2072973192 abstract "Background Targeted therapies are becoming increasingly important for the treatment of various diseases. Biomarkers are a critical component of a targeted therapy as they can be used to identify patients who are more likely to benefit from a treatment. Targeted therapies, however, have created major challenges in the design, conduct, and analysis of clinical trials. In traditional clinical trials, treatment effects for various biomarkers are typically evaluated in an exploratory fashion and only limited information about the predictive values of biomarkers obtained. Purpose New study designs are required, which effectively evaluate both the diagnostic and the therapeutic implication of biomarkers. Methods The Bayesian approach provides a useful framework for optimizing the clinical trial design by directly integrating information about biomarkers and clinical outcomes as they become available. We propose a Bayesian covariate-adjusted response-adaptive randomization design, which utilizes individual biomarker profiles and patient’s clinical outcomes as they become available during the course of the trial, to assign the most efficacious treatment to individual patients. Predictive biomarker subgroups are determined adaptively using a partial least squares regression approach. Results A series of simulation studies were conducted to examine the operating characteristics of the proposed study design. The simulation studies show that the proposed design efficiently identifies patients who benefit most from a targeted therapy and that there are substantial savings in the sample size requirements when compared to alternative designs. Limitations The design does not control for the type I error in the traditional sense and a positive result should be confirmed by conducting an independent phase III study focusing on the selected biomarker profile groups. Conclusions We conclude that the proposed design may serve a useful role in the early efficacy phase of targeted therapy development. Clinical Trials 2010; 7: 546—556. http://ctj.sagepub.com" @default.
- W2072973192 created "2016-06-24" @default.
- W2072973192 creator A5001986524 @default.
- W2072973192 creator A5016348831 @default.
- W2072973192 creator A5033944149 @default.
- W2072973192 creator A5037594300 @default.
- W2072973192 creator A5091511322 @default.
- W2072973192 date "2010-06-22" @default.
- W2072973192 modified "2023-09-23" @default.
- W2072973192 title "A Bayesian adaptive design with biomarkers for targeted therapies" @default.
- W2072973192 cites W1966267239 @default.
- W2072973192 cites W1984328540 @default.
- W2072973192 cites W1993895874 @default.
- W2072973192 cites W2013563746 @default.
- W2072973192 cites W2030500137 @default.
- W2072973192 cites W2034998138 @default.
- W2072973192 cites W2043235003 @default.
- W2072973192 cites W2048935051 @default.
- W2072973192 cites W2051817458 @default.
- W2072973192 cites W2064208261 @default.
- W2072973192 cites W2071631247 @default.
- W2072973192 cites W2083285874 @default.
- W2072973192 cites W2085327142 @default.
- W2072973192 cites W2093109772 @default.
- W2072973192 cites W2119088090 @default.
- W2072973192 cites W2133199783 @default.
- W2072973192 cites W2141667093 @default.
- W2072973192 cites W2149636226 @default.
- W2072973192 cites W2149734926 @default.
- W2072973192 cites W2152828142 @default.
- W2072973192 cites W2155291829 @default.
- W2072973192 cites W2161630562 @default.
- W2072973192 cites W3101896592 @default.
- W2072973192 cites W4254549097 @default.
- W2072973192 cites W4292691288 @default.
- W2072973192 cites W91108901 @default.
- W2072973192 doi "https://doi.org/10.1177/1740774510372657" @default.
- W2072973192 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3788617" @default.
- W2072973192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20571131" @default.
- W2072973192 hasPublicationYear "2010" @default.
- W2072973192 type Work @default.
- W2072973192 sameAs 2072973192 @default.
- W2072973192 citedByCount "25" @default.
- W2072973192 countsByYear W20729731922012 @default.
- W2072973192 countsByYear W20729731922013 @default.
- W2072973192 countsByYear W20729731922014 @default.
- W2072973192 countsByYear W20729731922015 @default.
- W2072973192 countsByYear W20729731922016 @default.
- W2072973192 countsByYear W20729731922017 @default.
- W2072973192 countsByYear W20729731922020 @default.
- W2072973192 countsByYear W20729731922022 @default.
- W2072973192 countsByYear W20729731922023 @default.
- W2072973192 crossrefType "journal-article" @default.
- W2072973192 hasAuthorship W2072973192A5001986524 @default.
- W2072973192 hasAuthorship W2072973192A5016348831 @default.
- W2072973192 hasAuthorship W2072973192A5033944149 @default.
- W2072973192 hasAuthorship W2072973192A5037594300 @default.
- W2072973192 hasAuthorship W2072973192A5091511322 @default.
- W2072973192 hasBestOaLocation W20729731922 @default.
- W2072973192 hasConcept C105795698 @default.
- W2072973192 hasConcept C107673813 @default.
- W2072973192 hasConcept C119043178 @default.
- W2072973192 hasConcept C119857082 @default.
- W2072973192 hasConcept C126322002 @default.
- W2072973192 hasConcept C129848803 @default.
- W2072973192 hasConcept C142724271 @default.
- W2072973192 hasConcept C148482608 @default.
- W2072973192 hasConcept C154945302 @default.
- W2072973192 hasConcept C163763905 @default.
- W2072973192 hasConcept C185592680 @default.
- W2072973192 hasConcept C2779318504 @default.
- W2072973192 hasConcept C2781197716 @default.
- W2072973192 hasConcept C2982777018 @default.
- W2072973192 hasConcept C33923547 @default.
- W2072973192 hasConcept C41008148 @default.
- W2072973192 hasConcept C535046627 @default.
- W2072973192 hasConcept C55493867 @default.
- W2072973192 hasConcept C71924100 @default.
- W2072973192 hasConceptScore W2072973192C105795698 @default.
- W2072973192 hasConceptScore W2072973192C107673813 @default.
- W2072973192 hasConceptScore W2072973192C119043178 @default.
- W2072973192 hasConceptScore W2072973192C119857082 @default.
- W2072973192 hasConceptScore W2072973192C126322002 @default.
- W2072973192 hasConceptScore W2072973192C129848803 @default.
- W2072973192 hasConceptScore W2072973192C142724271 @default.
- W2072973192 hasConceptScore W2072973192C148482608 @default.
- W2072973192 hasConceptScore W2072973192C154945302 @default.
- W2072973192 hasConceptScore W2072973192C163763905 @default.
- W2072973192 hasConceptScore W2072973192C185592680 @default.
- W2072973192 hasConceptScore W2072973192C2779318504 @default.
- W2072973192 hasConceptScore W2072973192C2781197716 @default.
- W2072973192 hasConceptScore W2072973192C2982777018 @default.
- W2072973192 hasConceptScore W2072973192C33923547 @default.
- W2072973192 hasConceptScore W2072973192C41008148 @default.
- W2072973192 hasConceptScore W2072973192C535046627 @default.
- W2072973192 hasConceptScore W2072973192C55493867 @default.
- W2072973192 hasConceptScore W2072973192C71924100 @default.
- W2072973192 hasIssue "5" @default.