Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073002331> ?p ?o ?g. }
- W2073002331 endingPage "092103" @default.
- W2073002331 startingPage "092103" @default.
- W2073002331 abstract "A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur." @default.
- W2073002331 created "2016-06-24" @default.
- W2073002331 creator A5003938045 @default.
- W2073002331 creator A5080510531 @default.
- W2073002331 date "2013-09-01" @default.
- W2073002331 modified "2023-10-14" @default.
- W2073002331 title "On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures" @default.
- W2073002331 cites W1634406475 @default.
- W2073002331 cites W1867459696 @default.
- W2073002331 cites W189875748 @default.
- W2073002331 cites W1966547213 @default.
- W2073002331 cites W1968536975 @default.
- W2073002331 cites W1974630183 @default.
- W2073002331 cites W1975947269 @default.
- W2073002331 cites W1976475131 @default.
- W2073002331 cites W1978595606 @default.
- W2073002331 cites W1985135200 @default.
- W2073002331 cites W1995601663 @default.
- W2073002331 cites W1997451672 @default.
- W2073002331 cites W1998341158 @default.
- W2073002331 cites W2002112438 @default.
- W2073002331 cites W2004526669 @default.
- W2073002331 cites W2004993687 @default.
- W2073002331 cites W2005868029 @default.
- W2073002331 cites W2009519722 @default.
- W2073002331 cites W2011726109 @default.
- W2073002331 cites W2013858861 @default.
- W2073002331 cites W2014551531 @default.
- W2073002331 cites W2015149386 @default.
- W2073002331 cites W2015736772 @default.
- W2073002331 cites W2020718546 @default.
- W2073002331 cites W2022185521 @default.
- W2073002331 cites W2039415162 @default.
- W2073002331 cites W2041288968 @default.
- W2073002331 cites W2042113767 @default.
- W2073002331 cites W2043236896 @default.
- W2073002331 cites W2044628713 @default.
- W2073002331 cites W2046528357 @default.
- W2073002331 cites W2054105919 @default.
- W2073002331 cites W2054324741 @default.
- W2073002331 cites W2056009598 @default.
- W2073002331 cites W2057372085 @default.
- W2073002331 cites W2058123815 @default.
- W2073002331 cites W2061425439 @default.
- W2073002331 cites W2065172262 @default.
- W2073002331 cites W2065534535 @default.
- W2073002331 cites W2071876135 @default.
- W2073002331 cites W2072635744 @default.
- W2073002331 cites W2074415741 @default.
- W2073002331 cites W2074439496 @default.
- W2073002331 cites W2078115847 @default.
- W2073002331 cites W2078457795 @default.
- W2073002331 cites W2082109591 @default.
- W2073002331 cites W2083699080 @default.
- W2073002331 cites W2088468915 @default.
- W2073002331 cites W2103418820 @default.
- W2073002331 cites W2111439206 @default.
- W2073002331 cites W2116902542 @default.
- W2073002331 cites W2139943987 @default.
- W2073002331 cites W2147475066 @default.
- W2073002331 cites W2149528569 @default.
- W2073002331 cites W2314492630 @default.
- W2073002331 cites W2332922940 @default.
- W2073002331 cites W2102188932 @default.
- W2073002331 cites W611144726 @default.
- W2073002331 doi "https://doi.org/10.1063/1.4820346" @default.
- W2073002331 hasPublicationYear "2013" @default.
- W2073002331 type Work @default.
- W2073002331 sameAs 2073002331 @default.
- W2073002331 citedByCount "146" @default.
- W2073002331 countsByYear W20730023312014 @default.
- W2073002331 countsByYear W20730023312015 @default.
- W2073002331 countsByYear W20730023312016 @default.
- W2073002331 countsByYear W20730023312017 @default.
- W2073002331 countsByYear W20730023312018 @default.
- W2073002331 countsByYear W20730023312019 @default.
- W2073002331 countsByYear W20730023312020 @default.
- W2073002331 countsByYear W20730023312021 @default.
- W2073002331 countsByYear W20730023312022 @default.
- W2073002331 countsByYear W20730023312023 @default.
- W2073002331 crossrefType "journal-article" @default.
- W2073002331 hasAuthorship W2073002331A5003938045 @default.
- W2073002331 hasAuthorship W2073002331A5080510531 @default.
- W2073002331 hasConcept C118419359 @default.
- W2073002331 hasConcept C121332964 @default.
- W2073002331 hasConcept C121864883 @default.
- W2073002331 hasConcept C134306372 @default.
- W2073002331 hasConcept C138777275 @default.
- W2073002331 hasConcept C144308804 @default.
- W2073002331 hasConcept C149288129 @default.
- W2073002331 hasConcept C162324750 @default.
- W2073002331 hasConcept C176217482 @default.
- W2073002331 hasConcept C196298200 @default.
- W2073002331 hasConcept C21547014 @default.
- W2073002331 hasConcept C33923547 @default.
- W2073002331 hasConcept C38349280 @default.
- W2073002331 hasConcept C44280652 @default.
- W2073002331 hasConcept C57736034 @default.