Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073002835> ?p ?o ?g. }
- W2073002835 endingPage "725" @default.
- W2073002835 startingPage "715" @default.
- W2073002835 abstract "Electric power demand forecasts play an essential role in the electric industry, as they provide the basis for making decisions in power system planning and operation. A great variety of mathematical methods have been used for demand forecasting. The development and improvement of appropriate mathematical tools will lead to more accurate demand forecasting techniques. In order to forecast the monthly electric power demand per hour in Spain for 2 years, this paper presents a comparison between a new forecasting approach considering vector autoregressive (VAR) forecasting models applied to interval time series (ITS) and the iMLP, the multi-layer perceptron model adapted to interval data. In the proposed comparison, for the VAR approach two models are fitted per every hour, one composed of the centre (mid-point) and radius (half-range), and another one of the lower and upper bounds according to the interval representation assumed by the ITS in the learning set. In the case of the iMLP, only the model composed of the centre and radius is fitted. The other interval representation composed of the lower and upper bounds is obtained from the linear combination of the two. This novel approach, obtaining two bivariate models each hour, makes possible to establish, for different periods in the day, which interval representation is more accurate. Furthermore, the comparison between two different techniques adapted to interval time series allows us to determine the efficiency of these models in forecasting electric power demand. It is important to note that the iMLP technique has been selected for the comparison, as it has shown its accuracy in forecasting daily electricity price intervals. This work shows the ITS forecasting methods as a potential tool that will lead to a reduction in risk when making power system planning and operational decisions." @default.
- W2073002835 created "2016-06-24" @default.
- W2073002835 creator A5015607037 @default.
- W2073002835 creator A5063798746 @default.
- W2073002835 date "2010-02-01" @default.
- W2073002835 modified "2023-10-03" @default.
- W2073002835 title "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP" @default.
- W2073002835 cites W113919739 @default.
- W2073002835 cites W1969091622 @default.
- W2073002835 cites W1975167999 @default.
- W2073002835 cites W1982660753 @default.
- W2073002835 cites W1984452465 @default.
- W2073002835 cites W2001165499 @default.
- W2073002835 cites W2006846066 @default.
- W2073002835 cites W2016210396 @default.
- W2073002835 cites W2019459021 @default.
- W2073002835 cites W2040410870 @default.
- W2073002835 cites W2055141465 @default.
- W2073002835 cites W2068708371 @default.
- W2073002835 cites W2072242542 @default.
- W2073002835 cites W2079554354 @default.
- W2073002835 cites W2095080384 @default.
- W2073002835 cites W2098995810 @default.
- W2073002835 cites W2105916576 @default.
- W2073002835 cites W2107025615 @default.
- W2073002835 cites W2108647521 @default.
- W2073002835 cites W2130426550 @default.
- W2073002835 cites W2133473130 @default.
- W2073002835 cites W2146588145 @default.
- W2073002835 cites W2152375058 @default.
- W2073002835 cites W2164083776 @default.
- W2073002835 cites W2168175751 @default.
- W2073002835 cites W2169548144 @default.
- W2073002835 cites W4242688646 @default.
- W2073002835 cites W4246686683 @default.
- W2073002835 cites W4255517119 @default.
- W2073002835 doi "https://doi.org/10.1016/j.enpol.2009.10.007" @default.
- W2073002835 hasPublicationYear "2010" @default.
- W2073002835 type Work @default.
- W2073002835 sameAs 2073002835 @default.
- W2073002835 citedByCount "127" @default.
- W2073002835 countsByYear W20730028352012 @default.
- W2073002835 countsByYear W20730028352013 @default.
- W2073002835 countsByYear W20730028352014 @default.
- W2073002835 countsByYear W20730028352015 @default.
- W2073002835 countsByYear W20730028352016 @default.
- W2073002835 countsByYear W20730028352017 @default.
- W2073002835 countsByYear W20730028352018 @default.
- W2073002835 countsByYear W20730028352019 @default.
- W2073002835 countsByYear W20730028352020 @default.
- W2073002835 countsByYear W20730028352021 @default.
- W2073002835 countsByYear W20730028352022 @default.
- W2073002835 countsByYear W20730028352023 @default.
- W2073002835 crossrefType "journal-article" @default.
- W2073002835 hasAuthorship W2073002835A5015607037 @default.
- W2073002835 hasAuthorship W2073002835A5063798746 @default.
- W2073002835 hasConcept C103402496 @default.
- W2073002835 hasConcept C105795698 @default.
- W2073002835 hasConcept C114614502 @default.
- W2073002835 hasConcept C121332964 @default.
- W2073002835 hasConcept C126255220 @default.
- W2073002835 hasConcept C127413603 @default.
- W2073002835 hasConcept C143724316 @default.
- W2073002835 hasConcept C146978453 @default.
- W2073002835 hasConcept C149782125 @default.
- W2073002835 hasConcept C151730666 @default.
- W2073002835 hasConcept C159877910 @default.
- W2073002835 hasConcept C163258240 @default.
- W2073002835 hasConcept C17744445 @default.
- W2073002835 hasConcept C193809577 @default.
- W2073002835 hasConcept C199539241 @default.
- W2073002835 hasConcept C204323151 @default.
- W2073002835 hasConcept C2776359362 @default.
- W2073002835 hasConcept C2778067643 @default.
- W2073002835 hasConcept C33923547 @default.
- W2073002835 hasConcept C40293303 @default.
- W2073002835 hasConcept C41008148 @default.
- W2073002835 hasConcept C42475967 @default.
- W2073002835 hasConcept C62520636 @default.
- W2073002835 hasConcept C64341305 @default.
- W2073002835 hasConcept C86803240 @default.
- W2073002835 hasConcept C89227174 @default.
- W2073002835 hasConcept C94625758 @default.
- W2073002835 hasConceptScore W2073002835C103402496 @default.
- W2073002835 hasConceptScore W2073002835C105795698 @default.
- W2073002835 hasConceptScore W2073002835C114614502 @default.
- W2073002835 hasConceptScore W2073002835C121332964 @default.
- W2073002835 hasConceptScore W2073002835C126255220 @default.
- W2073002835 hasConceptScore W2073002835C127413603 @default.
- W2073002835 hasConceptScore W2073002835C143724316 @default.
- W2073002835 hasConceptScore W2073002835C146978453 @default.
- W2073002835 hasConceptScore W2073002835C149782125 @default.
- W2073002835 hasConceptScore W2073002835C151730666 @default.
- W2073002835 hasConceptScore W2073002835C159877910 @default.
- W2073002835 hasConceptScore W2073002835C163258240 @default.
- W2073002835 hasConceptScore W2073002835C17744445 @default.
- W2073002835 hasConceptScore W2073002835C193809577 @default.
- W2073002835 hasConceptScore W2073002835C199539241 @default.