Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073016631> ?p ?o ?g. }
- W2073016631 endingPage "727" @default.
- W2073016631 startingPage "710" @default.
- W2073016631 abstract "Research in face recognition has continuously been challenged by extrinsic (head pose, lighting conditions) and intrinsic (facial expression, aging) sources of variability. While many survey papers on face recognition exist, in this paper, we focus on a comparative study of 3-D face recognition under expression variations. As a first contribution, 3-D face databases with expressions are listed, and the most important ones are briefly presented and their complexity is quantified using the iterative closest point (ICP) baseline recognition algorithm. This allows to rank the databases according to their inherent difficulty for face-recognition tasks. This analysis reveals that the FRGC v2 database can be considered as the most challenging because of its size, the presence of expressions and outliers, and the time lapse between the recordings. Therefore, we recommend to use this database as a reference database to evaluate (expression-invariant) 3-D face-recognition algorithms. We also determine and quantify the most important factors that influence the performance. It appears that performance decreases 1) with the degree of nonfrontal pose, 2) for certain expression types, 3) with the magnitude of the expressions, 4) with an increasing number of expressions, and 5) for a higher number of gallery subjects. Future 3-D face-recognition algorithms should be evaluated on the basis of all these factors. As the second contribution, a survey of published 3-D face-recognition methods that deal with expression variations is given. These methods are subdivided into three classes depending on the way the expressions are handled. Region-based methods use expression-stable regions only, while other methods model the expressions either using an isometric or a statistical model. Isometric models assume the deformation because of expression variation to be (locally) isometric, meaning that the deformation preserves lengths along the surface. Statistical models learn how the facial soft tissue deforms during expressions based on a training database with expression labels. Algorithmic performances are evaluated by the comparison of recognition rates for identification and verification. No statistical significant differences in class performance are found between any pair of classes." @default.
- W2073016631 created "2016-06-24" @default.
- W2073016631 creator A5008370723 @default.
- W2073016631 creator A5017232974 @default.
- W2073016631 creator A5054286392 @default.
- W2073016631 creator A5085220186 @default.
- W2073016631 creator A5088926659 @default.
- W2073016631 date "2012-09-01" @default.
- W2073016631 modified "2023-10-01" @default.
- W2073016631 title "A Comparative Study of 3-D Face Recognition Under Expression Variations" @default.
- W2073016631 cites W1505792443 @default.
- W2073016631 cites W1510601647 @default.
- W2073016631 cites W1520420617 @default.
- W2073016631 cites W1709036216 @default.
- W2073016631 cites W1883517952 @default.
- W2073016631 cites W1965740227 @default.
- W2073016631 cites W1970215261 @default.
- W2073016631 cites W1970647017 @default.
- W2073016631 cites W1975648636 @default.
- W2073016631 cites W1977348714 @default.
- W2073016631 cites W1980733718 @default.
- W2073016631 cites W1983733476 @default.
- W2073016631 cites W1989702938 @default.
- W2073016631 cites W1989832314 @default.
- W2073016631 cites W1998088305 @default.
- W2073016631 cites W1998613701 @default.
- W2073016631 cites W1999690352 @default.
- W2073016631 cites W2004993459 @default.
- W2073016631 cites W2018857832 @default.
- W2073016631 cites W2020065037 @default.
- W2073016631 cites W2029746270 @default.
- W2073016631 cites W2040662897 @default.
- W2073016631 cites W2047836041 @default.
- W2073016631 cites W2049981393 @default.
- W2073016631 cites W2059697359 @default.
- W2073016631 cites W2063668481 @default.
- W2073016631 cites W2067381682 @default.
- W2073016631 cites W2083286306 @default.
- W2073016631 cites W2092252438 @default.
- W2073016631 cites W2098236528 @default.
- W2073016631 cites W2098401339 @default.
- W2073016631 cites W2098578926 @default.
- W2073016631 cites W2102773363 @default.
- W2073016631 cites W2103464684 @default.
- W2073016631 cites W2106309519 @default.
- W2073016631 cites W2107109443 @default.
- W2073016631 cites W2109647201 @default.
- W2073016631 cites W2109992201 @default.
- W2073016631 cites W2111084364 @default.
- W2073016631 cites W2115689562 @default.
- W2073016631 cites W2116313104 @default.
- W2073016631 cites W2117715370 @default.
- W2073016631 cites W2119445003 @default.
- W2073016631 cites W2122158102 @default.
- W2073016631 cites W2127982639 @default.
- W2073016631 cites W2129253816 @default.
- W2073016631 cites W2131131256 @default.
- W2073016631 cites W2135059100 @default.
- W2073016631 cites W2136884564 @default.
- W2073016631 cites W2138451337 @default.
- W2073016631 cites W2140907607 @default.
- W2073016631 cites W2140959843 @default.
- W2073016631 cites W2152183666 @default.
- W2073016631 cites W2152492602 @default.
- W2073016631 cites W2153759571 @default.
- W2073016631 cites W2155695844 @default.
- W2073016631 cites W2159017231 @default.
- W2073016631 cites W2161308290 @default.
- W2073016631 cites W2163562741 @default.
- W2073016631 cites W2166164984 @default.
- W2073016631 cites W2166672191 @default.
- W2073016631 cites W2166743687 @default.
- W2073016631 cites W2168540480 @default.
- W2073016631 cites W2542323081 @default.
- W2073016631 cites W3143476288 @default.
- W2073016631 cites W4243205182 @default.
- W2073016631 doi "https://doi.org/10.1109/tsmcc.2011.2174221" @default.
- W2073016631 hasPublicationYear "2012" @default.
- W2073016631 type Work @default.
- W2073016631 sameAs 2073016631 @default.
- W2073016631 citedByCount "57" @default.
- W2073016631 countsByYear W20730166312012 @default.
- W2073016631 countsByYear W20730166312013 @default.
- W2073016631 countsByYear W20730166312014 @default.
- W2073016631 countsByYear W20730166312015 @default.
- W2073016631 countsByYear W20730166312016 @default.
- W2073016631 countsByYear W20730166312017 @default.
- W2073016631 countsByYear W20730166312018 @default.
- W2073016631 countsByYear W20730166312019 @default.
- W2073016631 countsByYear W20730166312020 @default.
- W2073016631 countsByYear W20730166312021 @default.
- W2073016631 countsByYear W20730166312023 @default.
- W2073016631 crossrefType "journal-article" @default.
- W2073016631 hasAuthorship W2073016631A5008370723 @default.
- W2073016631 hasAuthorship W2073016631A5017232974 @default.
- W2073016631 hasAuthorship W2073016631A5054286392 @default.
- W2073016631 hasAuthorship W2073016631A5085220186 @default.
- W2073016631 hasAuthorship W2073016631A5088926659 @default.