Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073079074> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2073079074 endingPage "311" @default.
- W2073079074 startingPage "292" @default.
- W2073079074 abstract "Abstract Scaling analysis of fluids displacement in porous media is a reliable fast method to evaluate the displacement performance of different oil production processes under various conditions. This paper describes scaling of multiphase flow through permeable media with special attention to three-phase immiscible water alternating gas flooding processes. The procedure of inspectional analysis (IA) was used to determine relevant dimensionless groups. It was found that scaling immiscible water alternative gas (IWAG) displacement in a two-dimensional homogeneous anisotropic medium needs matching of seven dimensionless scaling groups. A series of numerical sensitivity studies were conducted to determine the magnitude of scaling groups and their interaction with recovery factors. None of the dimensionless groups individually could correlate the efficiency of the process in all the circumstances. Two predictor models, a mathematical model and an artificial neural network (ANN) model, were developed to map the effective combinations of the dimensionless scaling groups. For the mathematical model, a new combined dimensionless group which incorporates all the dominant scaling groups has been derived. Functional relationship between the combined group and fractional oil recovery is investigated. This relation has potential application in prediction of displacement efficiency. To prepare the ANN prediction model, scaling groups obtained from fine mesh simulation were used as input parameters. The agreement between the simulation methods and ANN model validate the applicability of the model to predict the recovery factors for the range of the groups which were not included in the simulations. The comparison study of the models showed the superior performance of ANN model compared to the mathematical model. The ANN model can be used to propose a proper development plan for a reservoir and/or to determine the optimal plan of operation." @default.
- W2073079074 created "2016-06-24" @default.
- W2073079074 creator A5009102835 @default.
- W2073079074 creator A5051899123 @default.
- W2073079074 creator A5078896785 @default.
- W2073079074 date "2014-09-01" @default.
- W2073079074 modified "2023-10-02" @default.
- W2073079074 title "Mathematical and neural network prediction model of three-phase immiscible recovery process in porous media" @default.
- W2073079074 cites W183655873 @default.
- W2073079074 cites W1965775669 @default.
- W2073079074 cites W1982649110 @default.
- W2073079074 cites W1984993410 @default.
- W2073079074 cites W1990541788 @default.
- W2073079074 cites W1992017863 @default.
- W2073079074 cites W1992632910 @default.
- W2073079074 cites W2007931001 @default.
- W2073079074 cites W2012427834 @default.
- W2073079074 cites W2025402039 @default.
- W2073079074 cites W2032419264 @default.
- W2073079074 cites W2032593731 @default.
- W2073079074 cites W2041313939 @default.
- W2073079074 cites W2042651923 @default.
- W2073079074 cites W2045944538 @default.
- W2073079074 cites W2055200763 @default.
- W2073079074 cites W2058565313 @default.
- W2073079074 cites W2076070438 @default.
- W2073079074 cites W2090164487 @default.
- W2073079074 cites W2095274883 @default.
- W2073079074 cites W2106036938 @default.
- W2073079074 cites W2136226282 @default.
- W2073079074 cites W2317833467 @default.
- W2073079074 cites W2331880329 @default.
- W2073079074 cites W2497352366 @default.
- W2073079074 cites W2525124174 @default.
- W2073079074 doi "https://doi.org/10.1016/j.jngse.2014.07.016" @default.
- W2073079074 hasPublicationYear "2014" @default.
- W2073079074 type Work @default.
- W2073079074 sameAs 2073079074 @default.
- W2073079074 citedByCount "16" @default.
- W2073079074 countsByYear W20730790742015 @default.
- W2073079074 countsByYear W20730790742016 @default.
- W2073079074 countsByYear W20730790742018 @default.
- W2073079074 countsByYear W20730790742019 @default.
- W2073079074 countsByYear W20730790742020 @default.
- W2073079074 countsByYear W20730790742021 @default.
- W2073079074 countsByYear W20730790742023 @default.
- W2073079074 crossrefType "journal-article" @default.
- W2073079074 hasAuthorship W2073079074A5009102835 @default.
- W2073079074 hasAuthorship W2073079074A5051899123 @default.
- W2073079074 hasAuthorship W2073079074A5078896785 @default.
- W2073079074 hasConcept C105569014 @default.
- W2073079074 hasConcept C111919701 @default.
- W2073079074 hasConcept C127413603 @default.
- W2073079074 hasConcept C154945302 @default.
- W2073079074 hasConcept C178790620 @default.
- W2073079074 hasConcept C185592680 @default.
- W2073079074 hasConcept C187320778 @default.
- W2073079074 hasConcept C192562407 @default.
- W2073079074 hasConcept C21880701 @default.
- W2073079074 hasConcept C41008148 @default.
- W2073079074 hasConcept C44280652 @default.
- W2073079074 hasConcept C50644808 @default.
- W2073079074 hasConcept C6648577 @default.
- W2073079074 hasConcept C78762247 @default.
- W2073079074 hasConcept C98045186 @default.
- W2073079074 hasConceptScore W2073079074C105569014 @default.
- W2073079074 hasConceptScore W2073079074C111919701 @default.
- W2073079074 hasConceptScore W2073079074C127413603 @default.
- W2073079074 hasConceptScore W2073079074C154945302 @default.
- W2073079074 hasConceptScore W2073079074C178790620 @default.
- W2073079074 hasConceptScore W2073079074C185592680 @default.
- W2073079074 hasConceptScore W2073079074C187320778 @default.
- W2073079074 hasConceptScore W2073079074C192562407 @default.
- W2073079074 hasConceptScore W2073079074C21880701 @default.
- W2073079074 hasConceptScore W2073079074C41008148 @default.
- W2073079074 hasConceptScore W2073079074C44280652 @default.
- W2073079074 hasConceptScore W2073079074C50644808 @default.
- W2073079074 hasConceptScore W2073079074C6648577 @default.
- W2073079074 hasConceptScore W2073079074C78762247 @default.
- W2073079074 hasConceptScore W2073079074C98045186 @default.
- W2073079074 hasLocation W20730790741 @default.
- W2073079074 hasOpenAccess W2073079074 @default.
- W2073079074 hasPrimaryLocation W20730790741 @default.
- W2073079074 hasRelatedWork W1974493212 @default.
- W2073079074 hasRelatedWork W1977509873 @default.
- W2073079074 hasRelatedWork W2075580692 @default.
- W2073079074 hasRelatedWork W2099399659 @default.
- W2073079074 hasRelatedWork W2121036907 @default.
- W2073079074 hasRelatedWork W2123750560 @default.
- W2073079074 hasRelatedWork W2361364765 @default.
- W2073079074 hasRelatedWork W2370046024 @default.
- W2073079074 hasRelatedWork W2899084033 @default.
- W2073079074 hasRelatedWork W3200765626 @default.
- W2073079074 hasVolume "20" @default.
- W2073079074 isParatext "false" @default.
- W2073079074 isRetracted "false" @default.
- W2073079074 magId "2073079074" @default.
- W2073079074 workType "article" @default.