Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073090590> ?p ?o ?g. }
- W2073090590 endingPage "48" @default.
- W2073090590 startingPage "1" @default.
- W2073090590 abstract "Background NHS hospitals collect a wealth of administrative data covering accident and emergency (A&E) department attendances, inpatient and day case activity, and outpatient appointments. Such data are increasingly being used to compare units and services, but adjusting for risk is difficult. Objectives To derive robust risk-adjustment models for various patient groups, including those admitted for heart failure (HF), acute myocardial infarction, colorectal and orthopaedic surgery, and outcomes adjusting for available patient factors such as comorbidity, using England’s Hospital Episode Statistics (HES) data. To assess if more sophisticated statistical methods based on machine learning such as artificial neural networks (ANNs) outperform traditional logistic regression (LR) for risk prediction. To update and assess for the NHS the Charlson index for comorbidity. To assess the usefulness of outpatient data for these models. Main outcome measures Mortality, readmission, return to theatre, outpatient non-attendance. For HF patients we considered various readmission measures such as diagnosis-specific and total within a year. Methods We systematically reviewed studies comparing two or more comorbidity indices. Logistic regression, ANNs, support vector machines and random forests were compared for mortality and readmission. Models were assessed using discrimination and calibration statistics. Competing risks proportional hazards regression and various count models were used for future admissions and bed-days. Results Our systematic review and empirical analysis suggested that for general purposes comorbidity is currently best described by the set of 30 Elixhauser comorbidities plus dementia. Model discrimination was often high for mortality and poor, or at best moderate, for other outcomes, for example c = 0.62 for readmission and c = 0.73 for death following stroke. Calibration was often good for procedure groups but poorer for diagnosis groups, with overprediction of low risk a common cause. The machine learning methods we investigated offered little beyond LR for their greater complexity and implementation difficulties. For HF, some patient-level predictors differed by primary diagnosis of readmission but not by length of follow-up. Prior non-attendance at outpatient appointments was a useful, strong predictor of readmission. Hospital-level readmission rates for HF did not correlate with readmission rates for non-HF; hospital performance on national audit process measures largely correlated only with HF readmission rates. Conclusions Many practical risk-prediction or casemix adjustment models can be generated from HES data using LR, though an extra step is often required for accurate calibration. Including outpatient data in readmission models is useful. The three machine learning methods we assessed added little with these data. Readmission rates for HF patients should be divided by diagnosis on readmission when used for quality improvement. Future work As HES data continue to develop and improve in scope and accuracy, they can be used more, for instance A&E records. The return to theatre metric appears promising and could be extended to other index procedures and specialties. While our data did not warrant the testing of a larger number of machine learning methods, databases augmented with physiological and pathology information, for example, might benefit from methods such as boosted trees. Finally, one could apply the HF readmissions analysis to other chronic conditions. Funding The National Institute for Health Research Health Services and Delivery Research programme." @default.
- W2073090590 created "2016-06-24" @default.
- W2073090590 creator A5026365797 @default.
- W2073090590 creator A5047427172 @default.
- W2073090590 creator A5059546443 @default.
- W2073090590 creator A5077312969 @default.
- W2073090590 creator A5085417650 @default.
- W2073090590 date "2014-11-01" @default.
- W2073090590 modified "2023-09-27" @default.
- W2073090590 title "Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from English hospital administrative data (Hospital Episode Statistics)? A national observational study" @default.
- W2073090590 cites W1482913529 @default.
- W2073090590 cites W1486807436 @default.
- W2073090590 cites W1805369728 @default.
- W2073090590 cites W1829328013 @default.
- W2073090590 cites W1830719945 @default.
- W2073090590 cites W1852995168 @default.
- W2073090590 cites W1973628995 @default.
- W2073090590 cites W1983999488 @default.
- W2073090590 cites W1986810643 @default.
- W2073090590 cites W1993038694 @default.
- W2073090590 cites W1993606481 @default.
- W2073090590 cites W2000445173 @default.
- W2073090590 cites W2006341561 @default.
- W2073090590 cites W2011637231 @default.
- W2073090590 cites W2012373512 @default.
- W2073090590 cites W2012402038 @default.
- W2073090590 cites W2016026777 @default.
- W2073090590 cites W2030174946 @default.
- W2073090590 cites W2030981633 @default.
- W2073090590 cites W2032734523 @default.
- W2073090590 cites W2033585282 @default.
- W2073090590 cites W2037195555 @default.
- W2073090590 cites W2037741813 @default.
- W2073090590 cites W2038436407 @default.
- W2073090590 cites W2045030413 @default.
- W2073090590 cites W2046379709 @default.
- W2073090590 cites W2047492625 @default.
- W2073090590 cites W2047651282 @default.
- W2073090590 cites W2053430047 @default.
- W2073090590 cites W2056824747 @default.
- W2073090590 cites W2057780602 @default.
- W2073090590 cites W2065610092 @default.
- W2073090590 cites W2068892027 @default.
- W2073090590 cites W2069664309 @default.
- W2073090590 cites W2073886019 @default.
- W2073090590 cites W2078746258 @default.
- W2073090590 cites W2080176871 @default.
- W2073090590 cites W2082058463 @default.
- W2073090590 cites W2082684845 @default.
- W2073090590 cites W2087018232 @default.
- W2073090590 cites W2090077439 @default.
- W2073090590 cites W2090583578 @default.
- W2073090590 cites W2092661794 @default.
- W2073090590 cites W2093063118 @default.
- W2073090590 cites W2093104222 @default.
- W2073090590 cites W2094908215 @default.
- W2073090590 cites W2096972039 @default.
- W2073090590 cites W2097201279 @default.
- W2073090590 cites W2102235447 @default.
- W2073090590 cites W2102962027 @default.
- W2073090590 cites W2104076388 @default.
- W2073090590 cites W2107143197 @default.
- W2073090590 cites W2107301469 @default.
- W2073090590 cites W2112948240 @default.
- W2073090590 cites W2114592968 @default.
- W2073090590 cites W2116680794 @default.
- W2073090590 cites W2123820732 @default.
- W2073090590 cites W2128902956 @default.
- W2073090590 cites W2133241544 @default.
- W2073090590 cites W2140218006 @default.
- W2073090590 cites W2140452679 @default.
- W2073090590 cites W2140468511 @default.
- W2073090590 cites W2141852692 @default.
- W2073090590 cites W2143201841 @default.
- W2073090590 cites W2146417320 @default.
- W2073090590 cites W2150148889 @default.
- W2073090590 cites W2152097915 @default.
- W2073090590 cites W2153904220 @default.
- W2073090590 cites W2154746519 @default.
- W2073090590 cites W2157995113 @default.
- W2073090590 cites W2164763996 @default.
- W2073090590 cites W2165037395 @default.
- W2073090590 cites W2167324741 @default.
- W2073090590 cites W2257255885 @default.
- W2073090590 cites W2399832552 @default.
- W2073090590 cites W4212883601 @default.
- W2073090590 cites W4214871172 @default.
- W2073090590 cites W4231109964 @default.
- W2073090590 doi "https://doi.org/10.3310/hsdr02400" @default.
- W2073090590 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25642500" @default.
- W2073090590 hasPublicationYear "2014" @default.
- W2073090590 type Work @default.
- W2073090590 sameAs 2073090590 @default.
- W2073090590 citedByCount "16" @default.
- W2073090590 countsByYear W20730905902016 @default.
- W2073090590 countsByYear W20730905902017 @default.
- W2073090590 countsByYear W20730905902018 @default.
- W2073090590 countsByYear W20730905902019 @default.