Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073092061> ?p ?o ?g. }
- W2073092061 endingPage "25" @default.
- W2073092061 startingPage "19" @default.
- W2073092061 abstract "Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data.We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm.t-SNE was evaluated against classical principal component analysis.Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders." @default.
- W2073092061 created "2016-06-24" @default.
- W2073092061 creator A5032357963 @default.
- W2073092061 creator A5074378595 @default.
- W2073092061 creator A5082192669 @default.
- W2073092061 date "2014-10-01" @default.
- W2073092061 modified "2023-09-24" @default.
- W2073092061 title "Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data" @default.
- W2073092061 cites W1552183187 @default.
- W2073092061 cites W1595900569 @default.
- W2073092061 cites W1966717548 @default.
- W2073092061 cites W1969512656 @default.
- W2073092061 cites W1970928383 @default.
- W2073092061 cites W1977465442 @default.
- W2073092061 cites W1982729887 @default.
- W2073092061 cites W1984185054 @default.
- W2073092061 cites W1987971958 @default.
- W2073092061 cites W1990063233 @default.
- W2073092061 cites W1992763738 @default.
- W2073092061 cites W1992936223 @default.
- W2073092061 cites W1994867169 @default.
- W2073092061 cites W1997228011 @default.
- W2073092061 cites W2004695100 @default.
- W2073092061 cites W2004965120 @default.
- W2073092061 cites W2011430131 @default.
- W2073092061 cites W2014157362 @default.
- W2073092061 cites W2039203530 @default.
- W2073092061 cites W2039985265 @default.
- W2073092061 cites W2051613387 @default.
- W2073092061 cites W2053186076 @default.
- W2073092061 cites W2056678446 @default.
- W2073092061 cites W2060690669 @default.
- W2073092061 cites W2063404606 @default.
- W2073092061 cites W2066057010 @default.
- W2073092061 cites W2070231119 @default.
- W2073092061 cites W2071881327 @default.
- W2073092061 cites W2073814621 @default.
- W2073092061 cites W2073825902 @default.
- W2073092061 cites W2076514174 @default.
- W2073092061 cites W2094872971 @default.
- W2073092061 cites W2101135654 @default.
- W2073092061 cites W2106113519 @default.
- W2073092061 cites W2107402227 @default.
- W2073092061 cites W2118164359 @default.
- W2073092061 cites W2133396101 @default.
- W2073092061 cites W2136530770 @default.
- W2073092061 cites W2147232592 @default.
- W2073092061 cites W2148080251 @default.
- W2073092061 cites W2148402008 @default.
- W2073092061 cites W2152825437 @default.
- W2073092061 cites W2157102711 @default.
- W2073092061 cites W2157223246 @default.
- W2073092061 cites W2157511995 @default.
- W2073092061 cites W2158775170 @default.
- W2073092061 cites W2161671092 @default.
- W2073092061 cites W2165260680 @default.
- W2073092061 cites W2168372372 @default.
- W2073092061 cites W2171831801 @default.
- W2073092061 cites W2797320655 @default.
- W2073092061 cites W2977883299 @default.
- W2073092061 cites W4241074797 @default.
- W2073092061 doi "https://doi.org/10.1016/j.jneumeth.2014.08.001" @default.
- W2073092061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25117552" @default.
- W2073092061 hasPublicationYear "2014" @default.
- W2073092061 type Work @default.
- W2073092061 sameAs 2073092061 @default.
- W2073092061 citedByCount "49" @default.
- W2073092061 countsByYear W20730920612015 @default.
- W2073092061 countsByYear W20730920612016 @default.
- W2073092061 countsByYear W20730920612017 @default.
- W2073092061 countsByYear W20730920612018 @default.
- W2073092061 countsByYear W20730920612019 @default.
- W2073092061 countsByYear W20730920612020 @default.
- W2073092061 countsByYear W20730920612021 @default.
- W2073092061 countsByYear W20730920612022 @default.
- W2073092061 countsByYear W20730920612023 @default.
- W2073092061 crossrefType "journal-article" @default.
- W2073092061 hasAuthorship W2073092061A5032357963 @default.
- W2073092061 hasAuthorship W2073092061A5074378595 @default.
- W2073092061 hasAuthorship W2073092061A5082192669 @default.
- W2073092061 hasConcept C118552586 @default.
- W2073092061 hasConcept C119857082 @default.
- W2073092061 hasConcept C153180895 @default.
- W2073092061 hasConcept C154945302 @default.
- W2073092061 hasConcept C15744967 @default.
- W2073092061 hasConcept C27438332 @default.
- W2073092061 hasConcept C36464697 @default.
- W2073092061 hasConcept C41008148 @default.
- W2073092061 hasConcept C58103923 @default.
- W2073092061 hasConcept C58489278 @default.
- W2073092061 hasConcept C58693492 @default.
- W2073092061 hasConcept C73555534 @default.
- W2073092061 hasConcept C8038995 @default.
- W2073092061 hasConceptScore W2073092061C118552586 @default.
- W2073092061 hasConceptScore W2073092061C119857082 @default.
- W2073092061 hasConceptScore W2073092061C153180895 @default.
- W2073092061 hasConceptScore W2073092061C154945302 @default.
- W2073092061 hasConceptScore W2073092061C15744967 @default.