Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073108195> ?p ?o ?g. }
- W2073108195 endingPage "8424" @default.
- W2073108195 startingPage "8400" @default.
- W2073108195 abstract "The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity. We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation. Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO₂, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO₂ pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA) to 2-phenylethanol (2PE). Another tunable solvent is nearcritical water (NCW), whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds." @default.
- W2073108195 created "2016-06-24" @default.
- W2073108195 creator A5002634808 @default.
- W2073108195 creator A5007735470 @default.
- W2073108195 creator A5020670250 @default.
- W2073108195 creator A5048023690 @default.
- W2073108195 date "2010-11-16" @default.
- W2073108195 modified "2023-10-16" @default.
- W2073108195 title "Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water" @default.
- W2073108195 cites W1964725336 @default.
- W2073108195 cites W1971366944 @default.
- W2073108195 cites W1973699176 @default.
- W2073108195 cites W1978256021 @default.
- W2073108195 cites W1979728293 @default.
- W2073108195 cites W1982429662 @default.
- W2073108195 cites W1985074754 @default.
- W2073108195 cites W1993612760 @default.
- W2073108195 cites W1995607517 @default.
- W2073108195 cites W1998077487 @default.
- W2073108195 cites W2003958460 @default.
- W2073108195 cites W2006575441 @default.
- W2073108195 cites W2007001161 @default.
- W2073108195 cites W2007842812 @default.
- W2073108195 cites W2011478339 @default.
- W2073108195 cites W2014025395 @default.
- W2073108195 cites W2014089456 @default.
- W2073108195 cites W2015077647 @default.
- W2073108195 cites W2015392891 @default.
- W2073108195 cites W2017301582 @default.
- W2073108195 cites W2018689424 @default.
- W2073108195 cites W2020107595 @default.
- W2073108195 cites W2022838773 @default.
- W2073108195 cites W2023923099 @default.
- W2073108195 cites W2025032906 @default.
- W2073108195 cites W2025633622 @default.
- W2073108195 cites W2028010755 @default.
- W2073108195 cites W2028294625 @default.
- W2073108195 cites W2030620956 @default.
- W2073108195 cites W2031686441 @default.
- W2073108195 cites W2034657744 @default.
- W2073108195 cites W2035651253 @default.
- W2073108195 cites W2036843794 @default.
- W2073108195 cites W2038599593 @default.
- W2073108195 cites W2041406271 @default.
- W2073108195 cites W2042153297 @default.
- W2073108195 cites W2043095825 @default.
- W2073108195 cites W2044275691 @default.
- W2073108195 cites W2051136642 @default.
- W2073108195 cites W2051381561 @default.
- W2073108195 cites W2053849962 @default.
- W2073108195 cites W2056653102 @default.
- W2073108195 cites W2057645006 @default.
- W2073108195 cites W2057773211 @default.
- W2073108195 cites W2062093579 @default.
- W2073108195 cites W2063451314 @default.
- W2073108195 cites W2064940888 @default.
- W2073108195 cites W2068156141 @default.
- W2073108195 cites W2068257301 @default.
- W2073108195 cites W2068629671 @default.
- W2073108195 cites W2070302024 @default.
- W2073108195 cites W2082653153 @default.
- W2073108195 cites W2087610667 @default.
- W2073108195 cites W2087947900 @default.
- W2073108195 cites W2091032499 @default.
- W2073108195 cites W2091214717 @default.
- W2073108195 cites W2092007637 @default.
- W2073108195 cites W2092785550 @default.
- W2073108195 cites W2094179927 @default.
- W2073108195 cites W2129647837 @default.
- W2073108195 cites W2143213238 @default.
- W2073108195 cites W2144083203 @default.
- W2073108195 cites W2148639426 @default.
- W2073108195 cites W2149710067 @default.
- W2073108195 cites W2153706306 @default.
- W2073108195 cites W2165170041 @default.
- W2073108195 cites W2180210625 @default.
- W2073108195 cites W2318357748 @default.
- W2073108195 cites W2431647309 @default.
- W2073108195 cites W2950128860 @default.
- W2073108195 cites W2951951568 @default.
- W2073108195 doi "https://doi.org/10.3390/molecules15118400" @default.
- W2073108195 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6259171" @default.
- W2073108195 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21081860" @default.
- W2073108195 hasPublicationYear "2010" @default.
- W2073108195 type Work @default.
- W2073108195 sameAs 2073108195 @default.
- W2073108195 citedByCount "95" @default.
- W2073108195 countsByYear W20731081952012 @default.
- W2073108195 countsByYear W20731081952013 @default.
- W2073108195 countsByYear W20731081952014 @default.
- W2073108195 countsByYear W20731081952015 @default.
- W2073108195 countsByYear W20731081952016 @default.
- W2073108195 countsByYear W20731081952017 @default.
- W2073108195 countsByYear W20731081952018 @default.
- W2073108195 countsByYear W20731081952019 @default.
- W2073108195 countsByYear W20731081952020 @default.
- W2073108195 countsByYear W20731081952021 @default.
- W2073108195 countsByYear W20731081952022 @default.