Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073124479> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2073124479 abstract "The support vector machine (SVM) was a new machine learning technique developed on the basis of statistical learning theory. It is the most successful realization of statistical learning theory. To testify the validity of SVM, this study chose the data set of hyperspectral images sensed by AVIRIS, with the band selected by Bhattacharya distance. And it added different scales of texture information as the origin information of image for classification. The main difficulty of texture recognition was the lack of effective tools to characterize different scales of textures. To improve the problem, the wavelet co-occurrence parameters, mean, homogeneity, and standard deviation of different level discrete wavelet transform images were used as texture features. In this paper, the texture features combined with PCA band of image were adopted as the characteristic vector of training samples for SVM, and decision tree classification. Finally, traditional classification schemes of maximum likelihood were comparatively studied. The effectiveness of the classification including texture measures was also analyzed. The experimental results showed that SVM method gave the highest correct classification rate within all of these three methodologies while maximum likelihood gave the lowest rate. Adding texture feature information by the proposed approach to images improved classification accuracy for all of SVM, decision tree, and maximum likelihood classification." @default.
- W2073124479 created "2016-06-24" @default.
- W2073124479 creator A5023337666 @default.
- W2073124479 date "2009-08-01" @default.
- W2073124479 modified "2023-10-18" @default.
- W2073124479 title "Wavelet texture extraction and image classification of hyperspectral data based on Support Vector Machine" @default.
- W2073124479 cites W1551401966 @default.
- W2073124479 cites W2044465660 @default.
- W2073124479 cites W2050604644 @default.
- W2073124479 cites W2098057602 @default.
- W2073124479 cites W2098347925 @default.
- W2073124479 cites W2120846928 @default.
- W2073124479 cites W2153342908 @default.
- W2073124479 cites W2478493250 @default.
- W2073124479 cites W4239510810 @default.
- W2073124479 doi "https://doi.org/10.1109/geoinformatics.2009.5292863" @default.
- W2073124479 hasPublicationYear "2009" @default.
- W2073124479 type Work @default.
- W2073124479 sameAs 2073124479 @default.
- W2073124479 citedByCount "4" @default.
- W2073124479 countsByYear W20731244792014 @default.
- W2073124479 countsByYear W20731244792018 @default.
- W2073124479 countsByYear W20731244792021 @default.
- W2073124479 crossrefType "proceedings-article" @default.
- W2073124479 hasAuthorship W2073124479A5023337666 @default.
- W2073124479 hasConcept C115961682 @default.
- W2073124479 hasConcept C12267149 @default.
- W2073124479 hasConcept C153180895 @default.
- W2073124479 hasConcept C154945302 @default.
- W2073124479 hasConcept C159078339 @default.
- W2073124479 hasConcept C33923547 @default.
- W2073124479 hasConcept C41008148 @default.
- W2073124479 hasConcept C47432892 @default.
- W2073124479 hasConcept C52622490 @default.
- W2073124479 hasConcept C63099799 @default.
- W2073124479 hasConcept C75294576 @default.
- W2073124479 hasConcept C84525736 @default.
- W2073124479 hasConcept C9417928 @default.
- W2073124479 hasConceptScore W2073124479C115961682 @default.
- W2073124479 hasConceptScore W2073124479C12267149 @default.
- W2073124479 hasConceptScore W2073124479C153180895 @default.
- W2073124479 hasConceptScore W2073124479C154945302 @default.
- W2073124479 hasConceptScore W2073124479C159078339 @default.
- W2073124479 hasConceptScore W2073124479C33923547 @default.
- W2073124479 hasConceptScore W2073124479C41008148 @default.
- W2073124479 hasConceptScore W2073124479C47432892 @default.
- W2073124479 hasConceptScore W2073124479C52622490 @default.
- W2073124479 hasConceptScore W2073124479C63099799 @default.
- W2073124479 hasConceptScore W2073124479C75294576 @default.
- W2073124479 hasConceptScore W2073124479C84525736 @default.
- W2073124479 hasConceptScore W2073124479C9417928 @default.
- W2073124479 hasLocation W20731244791 @default.
- W2073124479 hasOpenAccess W2073124479 @default.
- W2073124479 hasPrimaryLocation W20731244791 @default.
- W2073124479 hasRelatedWork W2000165426 @default.
- W2073124479 hasRelatedWork W2041525275 @default.
- W2073124479 hasRelatedWork W2051197289 @default.
- W2073124479 hasRelatedWork W2056016498 @default.
- W2073124479 hasRelatedWork W2336974148 @default.
- W2073124479 hasRelatedWork W2508908072 @default.
- W2073124479 hasRelatedWork W2509146328 @default.
- W2073124479 hasRelatedWork W3131722669 @default.
- W2073124479 hasRelatedWork W3173596272 @default.
- W2073124479 hasRelatedWork W3204757516 @default.
- W2073124479 isParatext "false" @default.
- W2073124479 isRetracted "false" @default.
- W2073124479 magId "2073124479" @default.
- W2073124479 workType "article" @default.