Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073137223> ?p ?o ?g. }
- W2073137223 endingPage "346" @default.
- W2073137223 startingPage "343" @default.
- W2073137223 abstract "Thioredoxin-1 (Trx) is a 12-kDa redox-acting protein that is ubiquitously present in mammalian cells [ [1] Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989; 264: 13963-13966 Abstract Full Text PDF PubMed Google Scholar ]. Trx contains a redox regulatory domain with the cysteine residues 32 and 35. Together with the enzyme Trx reductase and nicotinamide adenine dinucleotide (NADPH), Trx forms a ubiquitous oxidoreductase system that regulates the cellular reduction/oxidation (redox) status and functions as a major antioxidant in the cell [ [2] Nordberg J. Arner E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001; 31: 1287-1312 Crossref PubMed Scopus (2110) Google Scholar ]. Trx-1 is primarily located in the cytosol but it can be furthermore secreted to the extracellular space under stress conditions [ [3] Hirota K. Nakamura H. Masutani H. Yodoi J. Thioredoxin superfamily and thioredoxin-inducing agents. Ann N Y Acad Sci. 2002; 957: 189-199 Crossref PubMed Scopus (126) Google Scholar ]. The Trx family consists of three members: cytosolic Trx-1, the mitochondrial Trx-2 and the Sp-Trx (sperm Trx, also designated as p32TrxL) [ 4 Miranda-Vizuete A. Ljung J. Damdimopoulos A.E. et al. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem. 2001; 276: 31567-31574 Crossref PubMed Scopus (126) Google Scholar , 5 Spyrou G. Enmark E. Miranda-Vizuete A. Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem. 1997; 272: 2936-2941 Crossref PubMed Scopus (326) Google Scholar , 6 Taniguchi Y. Taniguchi-Ueda Y. Mori K. Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res. 1996; 24: 2746-2752 Crossref PubMed Scopus (117) Google Scholar ]. They all contain the conserved – Cys-Gly-Pro-Cys – active site (CXXC motif). The CXXC motif is accessible on the surface of the protein and can be oxidized to a disulfide bond (S2) upon reduction of the target protein [ [7] Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995; 3: 239-243 Abstract Full Text Full Text PDF PubMed Scopus (370) Google Scholar ]. This disulfide bond in turn can be reduced by Trx reductase and NADPH, regulating and maintaining the reducing activity and functions of Trx-1 (Fig. 1). Trx-1, complemented by glutaredoxins and glutathione, keeps a reduced environment inside the cell by reducing protein disulfides, even under severe oxidative stress. Thus, Trx-1 mediates the cellular response to alterations in the redox state of the cell and can act as a scavenger of reactive oxygen species (ROS), such as H2O2[ [8] Chae H.Z. Chung S.J. Rhee S.G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994; 269: 27670-27678 Abstract Full Text PDF PubMed Google Scholar ]. An imbalance in the cell redox state by ROS alters the function of multiple cell pathways and is the underlying mechanism in the pathophysiology of many cardiovascular diseases. In this issue of the Journal of Molecular and Cellular Cardiology, Tao et al. [ [9] Yin T. Hou R. Liu S. Lau W.B. Wang H. Tao L. Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury. J Mol Cell Cardiol. 2010; Google Scholar ] draw the hypothesis that the nitrative inactivation of Trx-1 increases the vulnerability of diabetic hearts to ischemia/reperfusion (I/R) injury. To judge the physiological and pathophysiological impact of this investigation, it is inevitable to consider the broad range of Trx-1 functions beside its role as an antioxidant. Beyond its redox regulation by scavenging H2O2 and thereby reducing it to H2O, Trx-1 directly interacts with other proteins by forming disulfide bridges. Such reaction partners are ribonucleotide reductase, protein disulfide isomerase, apoptosis signaling kinase I (ASK1) and the thioredoxin interacting protein (TXNIP, also termed VDUIP1 for vitamin D3-upregulated protein) [ 10 Yamanaka H. Maehira F. Oshiro M. et al. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem Biophys Res Commun. 2000; 271: 796-800 Crossref PubMed Scopus (100) Google Scholar , 11 Liu H. Nishitoh H. Ichijo H. Kyriakis J.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000; 20: 2198-2208 Crossref PubMed Scopus (437) Google Scholar , 12 Liu Y. Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res. 2002; 90: 1259-1266 Crossref PubMed Scopus (299) Google Scholar , 13 Saitoh M. Nishitoh H. Fujii M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998; 17: 2596-2606 Crossref PubMed Scopus (2042) Google Scholar ]. Biochemical analyses showed that TXNIP inhibits Trx-1 activity by interacting with the catalytic site, suggesting that TXNIP is an endogenous inhibitor of Trx-1 [ [14] Nishiyama A. Matsui M. Iwata S. et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999; 274: 21645-21650 Crossref PubMed Scopus (570) Google Scholar ]. TXNIP plays a pivotal role in cardiovascular disorders and functions as a sensor for biomechanical and oxidative stress. Schulze et al. [ [15] Schulze P.C. Yoshioka J. Takahashi T. He Z. King G.L. Lee R.T. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004; 279: 30369-30374 Crossref PubMed Scopus (297) Google Scholar ] showed that hyperglycemia increased oxidative stress by inducing TXNIP and inhibiting the antioxidant function of Trx-1 in vascular smooth muscle cells (VSMC). Furthermore, Trx-1 can translocate into the nucleus under specific conditions and directly bind different transcription factors and thereby modulating their DNA-binding activity—for instance p53, NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) and activator protein (AP-1) [ 16 Hwang C.Y. Ryu Y.S. Chung M.S. et al. Thioredoxin modulates activator protein 1 (AP-1) activity and p27Kip1 degradation through direct interaction with Jab1. Oncogene. 2004; 23: 8868-8875 Crossref PubMed Scopus (64) Google Scholar , 17 Das K.C. c-Jun NH2-terminal kinase-mediated redox-dependent degradation of IkappaB: role of thioredoxin in NF-kappaB activation. J Biol Chem. 2001; 276: 4662-4670 Crossref PubMed Scopus (74) Google Scholar , 18 Schroeder P. Popp R. Wiegand B. Altschmied J. Haendeler J. Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells–important role for nuclear thioredoxin-1. Arterioscler Thromb Vasc Biol. 2007; 27: 2325-2331 Crossref PubMed Scopus (56) Google Scholar ]. Thus, Trx-1 is implicated in cell growth and exerts anti-apoptotic effects." @default.
- W2073137223 created "2016-06-24" @default.
- W2073137223 creator A5041142255 @default.
- W2073137223 creator A5061494282 @default.
- W2073137223 date "2010-09-01" @default.
- W2073137223 modified "2023-09-26" @default.
- W2073137223 title "Between nitros(yl)ation and nitration: Regulation of thioredoxin-1 in myocardial ischemia/reperfusion injury" @default.
- W2073137223 cites W1500094754 @default.
- W2073137223 cites W1551392207 @default.
- W2073137223 cites W1555938743 @default.
- W2073137223 cites W1595716614 @default.
- W2073137223 cites W1605869634 @default.
- W2073137223 cites W1967378743 @default.
- W2073137223 cites W1967729440 @default.
- W2073137223 cites W1969268163 @default.
- W2073137223 cites W1974335367 @default.
- W2073137223 cites W1976422365 @default.
- W2073137223 cites W1981229396 @default.
- W2073137223 cites W1985448020 @default.
- W2073137223 cites W1987743024 @default.
- W2073137223 cites W1990931110 @default.
- W2073137223 cites W1991493135 @default.
- W2073137223 cites W1991615080 @default.
- W2073137223 cites W1993780555 @default.
- W2073137223 cites W2003937760 @default.
- W2073137223 cites W2011095668 @default.
- W2073137223 cites W2019198561 @default.
- W2073137223 cites W2020762921 @default.
- W2073137223 cites W2021067833 @default.
- W2073137223 cites W2030454937 @default.
- W2073137223 cites W2033250171 @default.
- W2073137223 cites W2033319128 @default.
- W2073137223 cites W2034580062 @default.
- W2073137223 cites W2035022316 @default.
- W2073137223 cites W2035911479 @default.
- W2073137223 cites W2037313086 @default.
- W2073137223 cites W2037897099 @default.
- W2073137223 cites W2041729846 @default.
- W2073137223 cites W2050503669 @default.
- W2073137223 cites W2053329983 @default.
- W2073137223 cites W2053631034 @default.
- W2073137223 cites W2054027791 @default.
- W2073137223 cites W2065773243 @default.
- W2073137223 cites W2070839245 @default.
- W2073137223 cites W2074800090 @default.
- W2073137223 cites W2085601435 @default.
- W2073137223 cites W2089127203 @default.
- W2073137223 cites W2101957581 @default.
- W2073137223 cites W2105148699 @default.
- W2073137223 cites W2109719349 @default.
- W2073137223 cites W2119416582 @default.
- W2073137223 cites W2122179672 @default.
- W2073137223 cites W2127773685 @default.
- W2073137223 cites W2130191536 @default.
- W2073137223 cites W2132403739 @default.
- W2073137223 cites W2136335175 @default.
- W2073137223 cites W2137122673 @default.
- W2073137223 cites W2137445925 @default.
- W2073137223 cites W2143004446 @default.
- W2073137223 cites W2146217294 @default.
- W2073137223 cites W2152746956 @default.
- W2073137223 cites W2169405515 @default.
- W2073137223 cites W2170466989 @default.
- W2073137223 cites W2170492101 @default.
- W2073137223 cites W2171136506 @default.
- W2073137223 cites W2172134825 @default.
- W2073137223 cites W4238361207 @default.
- W2073137223 doi "https://doi.org/10.1016/j.yjmcc.2010.06.001" @default.
- W2073137223 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20542490" @default.
- W2073137223 hasPublicationYear "2010" @default.
- W2073137223 type Work @default.
- W2073137223 sameAs 2073137223 @default.
- W2073137223 citedByCount "6" @default.
- W2073137223 countsByYear W20731372232016 @default.
- W2073137223 countsByYear W20731372232020 @default.
- W2073137223 countsByYear W20731372232022 @default.
- W2073137223 crossrefType "journal-article" @default.
- W2073137223 hasAuthorship W2073137223A5041142255 @default.
- W2073137223 hasAuthorship W2073137223A5061494282 @default.
- W2073137223 hasConcept C125619963 @default.
- W2073137223 hasConcept C178790620 @default.
- W2073137223 hasConcept C181199279 @default.
- W2073137223 hasConcept C185592680 @default.
- W2073137223 hasConcept C2776151105 @default.
- W2073137223 hasConcept C2776901170 @default.
- W2073137223 hasConcept C2777737464 @default.
- W2073137223 hasConcept C2779201268 @default.
- W2073137223 hasConcept C3623737 @default.
- W2073137223 hasConcept C55493867 @default.
- W2073137223 hasConcept C55904794 @default.
- W2073137223 hasConcept C75520062 @default.
- W2073137223 hasConcept C86803240 @default.
- W2073137223 hasConcept C95444343 @default.
- W2073137223 hasConcept C98539663 @default.
- W2073137223 hasConceptScore W2073137223C125619963 @default.
- W2073137223 hasConceptScore W2073137223C178790620 @default.
- W2073137223 hasConceptScore W2073137223C181199279 @default.
- W2073137223 hasConceptScore W2073137223C185592680 @default.