Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073142786> ?p ?o ?g. }
- W2073142786 endingPage "51" @default.
- W2073142786 startingPage "43" @default.
- W2073142786 abstract "The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications." @default.
- W2073142786 created "2016-06-24" @default.
- W2073142786 creator A5007837489 @default.
- W2073142786 creator A5013451536 @default.
- W2073142786 creator A5014360249 @default.
- W2073142786 creator A5028690281 @default.
- W2073142786 creator A5044622657 @default.
- W2073142786 creator A5051606168 @default.
- W2073142786 creator A5058903476 @default.
- W2073142786 date "2015-06-01" @default.
- W2073142786 modified "2023-10-16" @default.
- W2073142786 title "Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications" @default.
- W2073142786 cites W1825216778 @default.
- W2073142786 cites W1983829242 @default.
- W2073142786 cites W1985883290 @default.
- W2073142786 cites W1989216505 @default.
- W2073142786 cites W2005148983 @default.
- W2073142786 cites W2009916602 @default.
- W2073142786 cites W2013959001 @default.
- W2073142786 cites W2016530107 @default.
- W2073142786 cites W2023635364 @default.
- W2073142786 cites W2023811172 @default.
- W2073142786 cites W2064388657 @default.
- W2073142786 cites W2065420550 @default.
- W2073142786 cites W2068407998 @default.
- W2073142786 cites W2078476047 @default.
- W2073142786 cites W2079444431 @default.
- W2073142786 cites W2087079233 @default.
- W2073142786 cites W2091632876 @default.
- W2073142786 cites W2092143500 @default.
- W2073142786 cites W2125450514 @default.
- W2073142786 cites W2142063750 @default.
- W2073142786 cites W2155420493 @default.
- W2073142786 cites W2165964351 @default.
- W2073142786 cites W2167812079 @default.
- W2073142786 doi "https://doi.org/10.1016/j.cpc.2015.01.017" @default.
- W2073142786 hasPublicationYear "2015" @default.
- W2073142786 type Work @default.
- W2073142786 sameAs 2073142786 @default.
- W2073142786 citedByCount "7" @default.
- W2073142786 countsByYear W20731427862015 @default.
- W2073142786 countsByYear W20731427862016 @default.
- W2073142786 countsByYear W20731427862018 @default.
- W2073142786 countsByYear W20731427862019 @default.
- W2073142786 countsByYear W20731427862020 @default.
- W2073142786 countsByYear W20731427862023 @default.
- W2073142786 crossrefType "journal-article" @default.
- W2073142786 hasAuthorship W2073142786A5007837489 @default.
- W2073142786 hasAuthorship W2073142786A5013451536 @default.
- W2073142786 hasAuthorship W2073142786A5014360249 @default.
- W2073142786 hasAuthorship W2073142786A5028690281 @default.
- W2073142786 hasAuthorship W2073142786A5044622657 @default.
- W2073142786 hasAuthorship W2073142786A5051606168 @default.
- W2073142786 hasAuthorship W2073142786A5058903476 @default.
- W2073142786 hasBestOaLocation W20731427862 @default.
- W2073142786 hasConcept C115537543 @default.
- W2073142786 hasConcept C133875982 @default.
- W2073142786 hasConcept C145108525 @default.
- W2073142786 hasConcept C150552126 @default.
- W2073142786 hasConcept C173608175 @default.
- W2073142786 hasConcept C177264268 @default.
- W2073142786 hasConcept C189783530 @default.
- W2073142786 hasConcept C190475519 @default.
- W2073142786 hasConcept C199360897 @default.
- W2073142786 hasConcept C2776760102 @default.
- W2073142786 hasConcept C2778119891 @default.
- W2073142786 hasConcept C41008148 @default.
- W2073142786 hasConcept C459310 @default.
- W2073142786 hasConcept C49154492 @default.
- W2073142786 hasConcept C78766204 @default.
- W2073142786 hasConcept C9390403 @default.
- W2073142786 hasConceptScore W2073142786C115537543 @default.
- W2073142786 hasConceptScore W2073142786C133875982 @default.
- W2073142786 hasConceptScore W2073142786C145108525 @default.
- W2073142786 hasConceptScore W2073142786C150552126 @default.
- W2073142786 hasConceptScore W2073142786C173608175 @default.
- W2073142786 hasConceptScore W2073142786C177264268 @default.
- W2073142786 hasConceptScore W2073142786C189783530 @default.
- W2073142786 hasConceptScore W2073142786C190475519 @default.
- W2073142786 hasConceptScore W2073142786C199360897 @default.
- W2073142786 hasConceptScore W2073142786C2776760102 @default.
- W2073142786 hasConceptScore W2073142786C2778119891 @default.
- W2073142786 hasConceptScore W2073142786C41008148 @default.
- W2073142786 hasConceptScore W2073142786C459310 @default.
- W2073142786 hasConceptScore W2073142786C49154492 @default.
- W2073142786 hasConceptScore W2073142786C78766204 @default.
- W2073142786 hasConceptScore W2073142786C9390403 @default.
- W2073142786 hasFunder F4320311011 @default.
- W2073142786 hasFunder F4320321764 @default.
- W2073142786 hasFunder F4320321837 @default.
- W2073142786 hasFunder F4320321864 @default.
- W2073142786 hasLocation W20731427861 @default.
- W2073142786 hasLocation W20731427862 @default.
- W2073142786 hasOpenAccess W2073142786 @default.
- W2073142786 hasPrimaryLocation W20731427861 @default.
- W2073142786 hasRelatedWork W1512604874 @default.
- W2073142786 hasRelatedWork W1975707871 @default.
- W2073142786 hasRelatedWork W2064856044 @default.