Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073191128> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2073191128 endingPage "441" @default.
- W2073191128 startingPage "433" @default.
- W2073191128 abstract "Pedestrian Collision Mitigation Systems (PCMS) are already in the market for some years. Due to continuously evolving EuroNCAP regulations their presence will increase. Visual sensors, already capable of pedestrian classification, provide functional benefits, because the reaction behavior can be optimized when the imminent collision object is recognized as pedestrian or cyclist. Nevertheless their performance will suffer under adverse environmental conditions like darkness, fog, rain or backlight. Even in such unfavorable situations the performance of radar sensors is not significantly deteriorated. Enabling classification capability to automotive radar will further improve road safety and will lower PCMS's overall costs. In this paper, a multi-reflection-point pedestrian target model based on motion analysis is presented. Together with an appropriate sensor model, pedestrian radar signal responses can be provided for a wide range of accident scenarios. Additionally velocity separation requirements that are needed for classification of pedestrians are derived from the simulations. Besides determination of classification features, the model discloses the limits of classical radar signal processing and further offers the opportunity to evaluate parametric spectral analysis. Based on simulated and measured baseband radar signals of pedestrians one of these techniques is deeper analyzed and its enhancement especially on the velocity separation capability is evaluated." @default.
- W2073191128 created "2016-06-24" @default.
- W2073191128 creator A5054476374 @default.
- W2073191128 creator A5074922588 @default.
- W2073191128 creator A5077383839 @default.
- W2073191128 creator A5080013584 @default.
- W2073191128 date "2015-04-16" @default.
- W2073191128 modified "2023-10-16" @default.
- W2073191128 title "Target modeling and deduction of automotive radar resolution requirements for pedestrian classification" @default.
- W2073191128 cites W1935517055 @default.
- W2073191128 cites W1999341152 @default.
- W2073191128 cites W2053282089 @default.
- W2073191128 cites W2084044203 @default.
- W2073191128 cites W2093823111 @default.
- W2073191128 cites W2111689079 @default.
- W2073191128 doi "https://doi.org/10.1017/s1759078715000690" @default.
- W2073191128 hasPublicationYear "2015" @default.
- W2073191128 type Work @default.
- W2073191128 sameAs 2073191128 @default.
- W2073191128 citedByCount "1" @default.
- W2073191128 countsByYear W20731911282019 @default.
- W2073191128 crossrefType "journal-article" @default.
- W2073191128 hasAuthorship W2073191128A5054476374 @default.
- W2073191128 hasAuthorship W2073191128A5074922588 @default.
- W2073191128 hasAuthorship W2073191128A5077383839 @default.
- W2073191128 hasAuthorship W2073191128A5080013584 @default.
- W2073191128 hasConcept C10929652 @default.
- W2073191128 hasConcept C121704057 @default.
- W2073191128 hasConcept C127413603 @default.
- W2073191128 hasConcept C134406370 @default.
- W2073191128 hasConcept C146978453 @default.
- W2073191128 hasConcept C154945302 @default.
- W2073191128 hasConcept C161475128 @default.
- W2073191128 hasConcept C204323151 @default.
- W2073191128 hasConcept C22212356 @default.
- W2073191128 hasConcept C2777113093 @default.
- W2073191128 hasConcept C2780156472 @default.
- W2073191128 hasConcept C31972630 @default.
- W2073191128 hasConcept C38652104 @default.
- W2073191128 hasConcept C41008148 @default.
- W2073191128 hasConcept C44154836 @default.
- W2073191128 hasConcept C526921623 @default.
- W2073191128 hasConcept C554190296 @default.
- W2073191128 hasConcept C76155785 @default.
- W2073191128 hasConcept C79403827 @default.
- W2073191128 hasConcept C81076408 @default.
- W2073191128 hasConceptScore W2073191128C10929652 @default.
- W2073191128 hasConceptScore W2073191128C121704057 @default.
- W2073191128 hasConceptScore W2073191128C127413603 @default.
- W2073191128 hasConceptScore W2073191128C134406370 @default.
- W2073191128 hasConceptScore W2073191128C146978453 @default.
- W2073191128 hasConceptScore W2073191128C154945302 @default.
- W2073191128 hasConceptScore W2073191128C161475128 @default.
- W2073191128 hasConceptScore W2073191128C204323151 @default.
- W2073191128 hasConceptScore W2073191128C22212356 @default.
- W2073191128 hasConceptScore W2073191128C2777113093 @default.
- W2073191128 hasConceptScore W2073191128C2780156472 @default.
- W2073191128 hasConceptScore W2073191128C31972630 @default.
- W2073191128 hasConceptScore W2073191128C38652104 @default.
- W2073191128 hasConceptScore W2073191128C41008148 @default.
- W2073191128 hasConceptScore W2073191128C44154836 @default.
- W2073191128 hasConceptScore W2073191128C526921623 @default.
- W2073191128 hasConceptScore W2073191128C554190296 @default.
- W2073191128 hasConceptScore W2073191128C76155785 @default.
- W2073191128 hasConceptScore W2073191128C79403827 @default.
- W2073191128 hasConceptScore W2073191128C81076408 @default.
- W2073191128 hasIssue "3-4" @default.
- W2073191128 hasLocation W20731911281 @default.
- W2073191128 hasOpenAccess W2073191128 @default.
- W2073191128 hasPrimaryLocation W20731911281 @default.
- W2073191128 hasRelatedWork W1507344694 @default.
- W2073191128 hasRelatedWork W2130426736 @default.
- W2073191128 hasRelatedWork W2334153212 @default.
- W2073191128 hasRelatedWork W2538429790 @default.
- W2073191128 hasRelatedWork W2744774776 @default.
- W2073191128 hasRelatedWork W2904296639 @default.
- W2073191128 hasRelatedWork W2944436841 @default.
- W2073191128 hasRelatedWork W3111466249 @default.
- W2073191128 hasRelatedWork W4302014161 @default.
- W2073191128 hasRelatedWork W2096366228 @default.
- W2073191128 hasVolume "7" @default.
- W2073191128 isParatext "false" @default.
- W2073191128 isRetracted "false" @default.
- W2073191128 magId "2073191128" @default.
- W2073191128 workType "article" @default.