Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073202397> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2073202397 abstract "This paper presents an evolvable version of a novel subsethood product fuzzy neural inference system (ESuPFuNIS). The original SuPFuNIS model 20 employs only fuzzy weights, and accepts both numeric and linguistic inputs. All numeric inputs are fuzzified using a feature specific fuzzifier. The model composes fuzzy signals from the input layer with fuzzy weights using a mutual subsethood measure. Rule nodes use a product aggregation operator. Outputs from the network are generated using volume defuzzification. Here we replace the original gradient descent learning procedure with a genetic optimization technique and report considerable improvements in classification accuracy and rule economy on three benchmark problems. Real-coded genetic algorithms (RGA's) have been employed to search for an optimal set of network parameters. We demonstrate the classification capabilities of the network on Ripley's synthetic two class data, Iris data and Forensic glass data. In all the problems considered, the GA based classifier performs better than its gradient descent counterpart in terms of classification accuracy as well as rule economy." @default.
- W2073202397 created "2016-06-24" @default.
- W2073202397 creator A5041272001 @default.
- W2073202397 creator A5062714550 @default.
- W2073202397 creator A5068147963 @default.
- W2073202397 date "2002-11-01" @default.
- W2073202397 modified "2023-09-27" @default.
- W2073202397 title "EVOLVABLE SUBSETHOOD PRODUCT FUZZY NEURAL NETWORK FOR PATTERN CLASSIFICATION" @default.
- W2073202397 cites W2012612681 @default.
- W2073202397 cites W2033194777 @default.
- W2073202397 cites W2062301117 @default.
- W2073202397 cites W2100004220 @default.
- W2073202397 cites W2109313762 @default.
- W2073202397 cites W2117043380 @default.
- W2073202397 cites W2125408827 @default.
- W2073202397 cites W2142137407 @default.
- W2073202397 cites W2156222099 @default.
- W2073202397 cites W2159111290 @default.
- W2073202397 cites W2164759297 @default.
- W2073202397 doi "https://doi.org/10.1142/s0218001402002088" @default.
- W2073202397 hasPublicationYear "2002" @default.
- W2073202397 type Work @default.
- W2073202397 sameAs 2073202397 @default.
- W2073202397 citedByCount "1" @default.
- W2073202397 countsByYear W20732023972021 @default.
- W2073202397 crossrefType "journal-article" @default.
- W2073202397 hasAuthorship W2073202397A5041272001 @default.
- W2073202397 hasAuthorship W2073202397A5062714550 @default.
- W2073202397 hasAuthorship W2073202397A5068147963 @default.
- W2073202397 hasConcept C119857082 @default.
- W2073202397 hasConcept C124101348 @default.
- W2073202397 hasConcept C127385683 @default.
- W2073202397 hasConcept C153180895 @default.
- W2073202397 hasConcept C153258448 @default.
- W2073202397 hasConcept C154945302 @default.
- W2073202397 hasConcept C170260401 @default.
- W2073202397 hasConcept C1883856 @default.
- W2073202397 hasConcept C195975749 @default.
- W2073202397 hasConcept C2780049643 @default.
- W2073202397 hasConcept C29470771 @default.
- W2073202397 hasConcept C41008148 @default.
- W2073202397 hasConcept C42011625 @default.
- W2073202397 hasConcept C50644808 @default.
- W2073202397 hasConcept C58166 @default.
- W2073202397 hasConcept C95623464 @default.
- W2073202397 hasConceptScore W2073202397C119857082 @default.
- W2073202397 hasConceptScore W2073202397C124101348 @default.
- W2073202397 hasConceptScore W2073202397C127385683 @default.
- W2073202397 hasConceptScore W2073202397C153180895 @default.
- W2073202397 hasConceptScore W2073202397C153258448 @default.
- W2073202397 hasConceptScore W2073202397C154945302 @default.
- W2073202397 hasConceptScore W2073202397C170260401 @default.
- W2073202397 hasConceptScore W2073202397C1883856 @default.
- W2073202397 hasConceptScore W2073202397C195975749 @default.
- W2073202397 hasConceptScore W2073202397C2780049643 @default.
- W2073202397 hasConceptScore W2073202397C29470771 @default.
- W2073202397 hasConceptScore W2073202397C41008148 @default.
- W2073202397 hasConceptScore W2073202397C42011625 @default.
- W2073202397 hasConceptScore W2073202397C50644808 @default.
- W2073202397 hasConceptScore W2073202397C58166 @default.
- W2073202397 hasConceptScore W2073202397C95623464 @default.
- W2073202397 hasLocation W20732023971 @default.
- W2073202397 hasOpenAccess W2073202397 @default.
- W2073202397 hasPrimaryLocation W20732023971 @default.
- W2073202397 hasRelatedWork W1485090359 @default.
- W2073202397 hasRelatedWork W1493159477 @default.
- W2073202397 hasRelatedWork W1536967168 @default.
- W2073202397 hasRelatedWork W1967710160 @default.
- W2073202397 hasRelatedWork W2004673242 @default.
- W2073202397 hasRelatedWork W2041710935 @default.
- W2073202397 hasRelatedWork W2115647012 @default.
- W2073202397 hasRelatedWork W2131398822 @default.
- W2073202397 hasRelatedWork W2133191389 @default.
- W2073202397 hasRelatedWork W2148850601 @default.
- W2073202397 isParatext "false" @default.
- W2073202397 isRetracted "false" @default.
- W2073202397 magId "2073202397" @default.
- W2073202397 workType "article" @default.