Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073246390> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2073246390 abstract "The research of the regional ecological environment becomes more important to regional Sustainable Development in order to achieve the harmonious relationship between the person and the nature. The advent of spatial information technologies, such as GIS, GPS and RS, have great enhanced our capabilities to collect and capture spatial data. How to discover potentially useful information and knowledge from massive amounts of spatial data is becoming a crucial project for spatial analysis and spatial decision making. Particle Swarm Optimization has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to spatial data mining. This paper focuses on construction and learning a Particle Swarm Optimization model for spatial data mining. Firstly, the theory of spatial data mining is introduced and the characteristics of Particle Swarm Optimization are discussed. A framework and process of spatial data mining is proposed. Then we construct a Particle Swarm Optimization model for spatial data mining with the given dataset. The research area is focused on the distribution of pollution sources in Wuhan City. The experimental results demonstrate the feasibility and practical of the proposed approach to spatial data mining. Finally, draw a conclusion and show further avenues for research. Through the empirical study, it has been proved that Particle Swarm Optimization algorithm is feasible and the conclusion can provide instruction for local environmental planning." @default.
- W2073246390 created "2016-06-24" @default.
- W2073246390 creator A5074839105 @default.
- W2073246390 creator A5089863134 @default.
- W2073246390 date "2009-10-13" @default.
- W2073246390 modified "2023-09-27" @default.
- W2073246390 title "Construction and application of particle swarm optimization algorithm for ecological spatial data mining" @default.
- W2073246390 doi "https://doi.org/10.1117/12.838457" @default.
- W2073246390 hasPublicationYear "2009" @default.
- W2073246390 type Work @default.
- W2073246390 sameAs 2073246390 @default.
- W2073246390 citedByCount "0" @default.
- W2073246390 crossrefType "proceedings-article" @default.
- W2073246390 hasAuthorship W2073246390A5074839105 @default.
- W2073246390 hasAuthorship W2073246390A5089863134 @default.
- W2073246390 hasConcept C111919701 @default.
- W2073246390 hasConcept C119857082 @default.
- W2073246390 hasConcept C122357587 @default.
- W2073246390 hasConcept C124101348 @default.
- W2073246390 hasConcept C154945302 @default.
- W2073246390 hasConcept C159620131 @default.
- W2073246390 hasConcept C181335050 @default.
- W2073246390 hasConcept C205649164 @default.
- W2073246390 hasConcept C41008148 @default.
- W2073246390 hasConcept C62649853 @default.
- W2073246390 hasConcept C85617194 @default.
- W2073246390 hasConcept C98045186 @default.
- W2073246390 hasConceptScore W2073246390C111919701 @default.
- W2073246390 hasConceptScore W2073246390C119857082 @default.
- W2073246390 hasConceptScore W2073246390C122357587 @default.
- W2073246390 hasConceptScore W2073246390C124101348 @default.
- W2073246390 hasConceptScore W2073246390C154945302 @default.
- W2073246390 hasConceptScore W2073246390C159620131 @default.
- W2073246390 hasConceptScore W2073246390C181335050 @default.
- W2073246390 hasConceptScore W2073246390C205649164 @default.
- W2073246390 hasConceptScore W2073246390C41008148 @default.
- W2073246390 hasConceptScore W2073246390C62649853 @default.
- W2073246390 hasConceptScore W2073246390C85617194 @default.
- W2073246390 hasConceptScore W2073246390C98045186 @default.
- W2073246390 hasLocation W20732463901 @default.
- W2073246390 hasOpenAccess W2073246390 @default.
- W2073246390 hasPrimaryLocation W20732463901 @default.
- W2073246390 hasRelatedWork W10394924 @default.
- W2073246390 hasRelatedWork W2031835531 @default.
- W2073246390 hasRelatedWork W2073246390 @default.
- W2073246390 hasRelatedWork W2093205780 @default.
- W2073246390 hasRelatedWork W2184956897 @default.
- W2073246390 hasRelatedWork W2351721886 @default.
- W2073246390 hasRelatedWork W2758703592 @default.
- W2073246390 hasRelatedWork W2931569737 @default.
- W2073246390 hasRelatedWork W3135446416 @default.
- W2073246390 hasRelatedWork W2090193871 @default.
- W2073246390 isParatext "false" @default.
- W2073246390 isRetracted "false" @default.
- W2073246390 magId "2073246390" @default.
- W2073246390 workType "article" @default.