Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073282051> ?p ?o ?g. }
- W2073282051 endingPage "1494" @default.
- W2073282051 startingPage "1483" @default.
- W2073282051 abstract "Reverse engineering transforms real parts into engineering concepts or models. First, sampled points are mapped from the object’s surface by using tools such as laser scanners or cameras. Then, the sampled points are fitted to a free-form surface or a standard shape by using one of the geometric modeling techniques. The curves on the surface have to be modeled before surface modeling. In order to obtain a good B-spline curve model from large data, the knots are usually respected as variables. A curve is then modeled as a continuous, nonlinear and multivariate optimization problem with many local optima. For this reason it is very difficult to reach a global optimum. In this paper, we convert the original problem into a discrete combinatorial optimization problem like in Yoshimoto et al. [F. Yoshimoto, M. Moriyama, T. Harada, Automatic knot placement by a genetic algorithm for data fitting with a spline, in: Proceedings of the International Conference on Shape Modeling and Applications, IEEE Computer Society Press, 1999, pp. 162–169] and Sarfraz et al. [M. Sarfraz, S.A. Raza, Capturing outline of fonts using genetic algorithm and splines, in: Fifth International Conference on Information Visualisation (IV’01), 2001, pp. 738–743]. Then, we suggest a new method that solves the converted problem by artificial immune systems. We think the candidates of the locations of knots as antibodies. We define the affinity measure benefit from Akaike’s Information Criterion (AIC). The proposed method determines the appropriate location of knots automatically and simultaneously. Furthermore, we do not need any subjective parameter or good population of initial location of knots for a good iterative search. Some examples are also given to demonstrate the efficiency and effectiveness of our method." @default.
- W2073282051 created "2016-06-24" @default.
- W2073282051 creator A5059227910 @default.
- W2073282051 creator A5082745110 @default.
- W2073282051 date "2009-04-29" @default.
- W2073282051 modified "2023-09-27" @default.
- W2073282051 title "Automatic knot adjustment using an artificial immune system for B-spline curve approximation" @default.
- W2073282051 cites W1546344463 @default.
- W2073282051 cites W1548879090 @default.
- W2073282051 cites W1563684785 @default.
- W2073282051 cites W1580533329 @default.
- W2073282051 cites W1928338759 @default.
- W2073282051 cites W1967194987 @default.
- W2073282051 cites W1979480679 @default.
- W2073282051 cites W1999033892 @default.
- W2073282051 cites W1999284314 @default.
- W2073282051 cites W2000388606 @default.
- W2073282051 cites W2005462790 @default.
- W2073282051 cites W2013686528 @default.
- W2073282051 cites W2022142203 @default.
- W2073282051 cites W2038547851 @default.
- W2073282051 cites W2066003887 @default.
- W2073282051 cites W2075912154 @default.
- W2073282051 cites W2076526693 @default.
- W2073282051 cites W2077816714 @default.
- W2073282051 cites W2080056907 @default.
- W2073282051 cites W2090282705 @default.
- W2073282051 cites W2107172243 @default.
- W2073282051 cites W2109204794 @default.
- W2073282051 cites W2115290316 @default.
- W2073282051 cites W2121681020 @default.
- W2073282051 cites W2129624205 @default.
- W2073282051 cites W2135076264 @default.
- W2073282051 cites W2139210022 @default.
- W2073282051 cites W2146697392 @default.
- W2073282051 cites W2148605194 @default.
- W2073282051 cites W2162870748 @default.
- W2073282051 cites W2330536347 @default.
- W2073282051 cites W3155124 @default.
- W2073282051 cites W11219134 @default.
- W2073282051 cites W1632810320 @default.
- W2073282051 doi "https://doi.org/10.1016/j.ins.2008.11.037" @default.
- W2073282051 hasPublicationYear "2009" @default.
- W2073282051 type Work @default.
- W2073282051 sameAs 2073282051 @default.
- W2073282051 citedByCount "74" @default.
- W2073282051 countsByYear W20732820512012 @default.
- W2073282051 countsByYear W20732820512013 @default.
- W2073282051 countsByYear W20732820512014 @default.
- W2073282051 countsByYear W20732820512015 @default.
- W2073282051 countsByYear W20732820512016 @default.
- W2073282051 countsByYear W20732820512017 @default.
- W2073282051 countsByYear W20732820512018 @default.
- W2073282051 countsByYear W20732820512019 @default.
- W2073282051 countsByYear W20732820512020 @default.
- W2073282051 countsByYear W20732820512021 @default.
- W2073282051 countsByYear W20732820512022 @default.
- W2073282051 countsByYear W20732820512023 @default.
- W2073282051 crossrefType "journal-article" @default.
- W2073282051 hasAuthorship W2073282051A5059227910 @default.
- W2073282051 hasAuthorship W2073282051A5082745110 @default.
- W2073282051 hasConcept C10390562 @default.
- W2073282051 hasConcept C11413529 @default.
- W2073282051 hasConcept C119857082 @default.
- W2073282051 hasConcept C121332964 @default.
- W2073282051 hasConcept C126674687 @default.
- W2073282051 hasConcept C127413603 @default.
- W2073282051 hasConcept C134306372 @default.
- W2073282051 hasConcept C154945302 @default.
- W2073282051 hasConcept C158622935 @default.
- W2073282051 hasConcept C15945459 @default.
- W2073282051 hasConcept C184389593 @default.
- W2073282051 hasConcept C21080849 @default.
- W2073282051 hasConcept C2779863119 @default.
- W2073282051 hasConcept C33923547 @default.
- W2073282051 hasConcept C41008148 @default.
- W2073282051 hasConcept C42360764 @default.
- W2073282051 hasConcept C62520636 @default.
- W2073282051 hasConcept C66938386 @default.
- W2073282051 hasConcept C93768804 @default.
- W2073282051 hasConceptScore W2073282051C10390562 @default.
- W2073282051 hasConceptScore W2073282051C11413529 @default.
- W2073282051 hasConceptScore W2073282051C119857082 @default.
- W2073282051 hasConceptScore W2073282051C121332964 @default.
- W2073282051 hasConceptScore W2073282051C126674687 @default.
- W2073282051 hasConceptScore W2073282051C127413603 @default.
- W2073282051 hasConceptScore W2073282051C134306372 @default.
- W2073282051 hasConceptScore W2073282051C154945302 @default.
- W2073282051 hasConceptScore W2073282051C158622935 @default.
- W2073282051 hasConceptScore W2073282051C15945459 @default.
- W2073282051 hasConceptScore W2073282051C184389593 @default.
- W2073282051 hasConceptScore W2073282051C21080849 @default.
- W2073282051 hasConceptScore W2073282051C2779863119 @default.
- W2073282051 hasConceptScore W2073282051C33923547 @default.
- W2073282051 hasConceptScore W2073282051C41008148 @default.
- W2073282051 hasConceptScore W2073282051C42360764 @default.
- W2073282051 hasConceptScore W2073282051C62520636 @default.
- W2073282051 hasConceptScore W2073282051C66938386 @default.