Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073305188> ?p ?o ?g. }
- W2073305188 endingPage "6058" @default.
- W2073305188 startingPage "6047" @default.
- W2073305188 abstract "The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations." @default.
- W2073305188 created "2016-06-24" @default.
- W2073305188 creator A5007977458 @default.
- W2073305188 creator A5013831286 @default.
- W2073305188 creator A5029562599 @default.
- W2073305188 creator A5085764474 @default.
- W2073305188 creator A5086458556 @default.
- W2073305188 date "2013-09-01" @default.
- W2073305188 modified "2023-10-02" @default.
- W2073305188 title "Assets of imputation to ultra-high density for productive and functional traits" @default.
- W2073305188 cites W1928998639 @default.
- W2073305188 cites W1966030218 @default.
- W2073305188 cites W1970459140 @default.
- W2073305188 cites W1975789252 @default.
- W2073305188 cites W1975977333 @default.
- W2073305188 cites W1982652137 @default.
- W2073305188 cites W1982799467 @default.
- W2073305188 cites W1987138550 @default.
- W2073305188 cites W1988538876 @default.
- W2073305188 cites W1992436001 @default.
- W2073305188 cites W2008014772 @default.
- W2073305188 cites W2011370111 @default.
- W2073305188 cites W2023586399 @default.
- W2073305188 cites W2030099389 @default.
- W2073305188 cites W2034581323 @default.
- W2073305188 cites W2036326740 @default.
- W2073305188 cites W2046914833 @default.
- W2073305188 cites W2054149390 @default.
- W2073305188 cites W2059542829 @default.
- W2073305188 cites W2065319808 @default.
- W2073305188 cites W2067715889 @default.
- W2073305188 cites W2073593854 @default.
- W2073305188 cites W2085864372 @default.
- W2073305188 cites W2094366893 @default.
- W2073305188 cites W2102087753 @default.
- W2073305188 cites W2106330651 @default.
- W2073305188 cites W2110787179 @default.
- W2073305188 cites W2111363946 @default.
- W2073305188 cites W2111940561 @default.
- W2073305188 cites W2115038037 @default.
- W2073305188 cites W2115610250 @default.
- W2073305188 cites W2115837368 @default.
- W2073305188 cites W2130434665 @default.
- W2073305188 cites W2132896219 @default.
- W2073305188 cites W2137872210 @default.
- W2073305188 cites W2140040043 @default.
- W2073305188 cites W2151802683 @default.
- W2073305188 cites W2157164297 @default.
- W2073305188 cites W2158853815 @default.
- W2073305188 cites W2160819071 @default.
- W2073305188 cites W2163566091 @default.
- W2073305188 cites W2166550668 @default.
- W2073305188 cites W2418428245 @default.
- W2073305188 cites W3215186461 @default.
- W2073305188 cites W4367275836 @default.
- W2073305188 doi "https://doi.org/10.3168/jds.2013-6793" @default.
- W2073305188 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23810591" @default.
- W2073305188 hasPublicationYear "2013" @default.
- W2073305188 type Work @default.
- W2073305188 sameAs 2073305188 @default.
- W2073305188 citedByCount "13" @default.
- W2073305188 countsByYear W20733051882013 @default.
- W2073305188 countsByYear W20733051882014 @default.
- W2073305188 countsByYear W20733051882015 @default.
- W2073305188 countsByYear W20733051882016 @default.
- W2073305188 countsByYear W20733051882017 @default.
- W2073305188 countsByYear W20733051882019 @default.
- W2073305188 countsByYear W20733051882020 @default.
- W2073305188 countsByYear W20733051882021 @default.
- W2073305188 countsByYear W20733051882022 @default.
- W2073305188 crossrefType "journal-article" @default.
- W2073305188 hasAuthorship W2073305188A5007977458 @default.
- W2073305188 hasAuthorship W2073305188A5013831286 @default.
- W2073305188 hasAuthorship W2073305188A5029562599 @default.
- W2073305188 hasAuthorship W2073305188A5085764474 @default.
- W2073305188 hasAuthorship W2073305188A5086458556 @default.
- W2073305188 hasBestOaLocation W20733051881 @default.
- W2073305188 hasConcept C103545067 @default.
- W2073305188 hasConcept C104317684 @default.
- W2073305188 hasConcept C105795698 @default.
- W2073305188 hasConcept C135763542 @default.
- W2073305188 hasConcept C153209595 @default.
- W2073305188 hasConcept C154945302 @default.
- W2073305188 hasConcept C2908647359 @default.
- W2073305188 hasConcept C2992444039 @default.
- W2073305188 hasConcept C31467283 @default.
- W2073305188 hasConcept C33923547 @default.
- W2073305188 hasConcept C41008148 @default.
- W2073305188 hasConcept C54355233 @default.
- W2073305188 hasConcept C58041806 @default.
- W2073305188 hasConcept C71924100 @default.
- W2073305188 hasConcept C81917197 @default.
- W2073305188 hasConcept C86803240 @default.
- W2073305188 hasConcept C9357733 @default.
- W2073305188 hasConcept C99454951 @default.
- W2073305188 hasConceptScore W2073305188C103545067 @default.
- W2073305188 hasConceptScore W2073305188C104317684 @default.
- W2073305188 hasConceptScore W2073305188C105795698 @default.