Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073307540> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2073307540 abstract "As our knowledge of Parkinson's disease increases, we are developing sophisticated computational models of the neuronal networks that go awry in this condition. Such models can form a test bed for the rational design of control strategies to reduce the pathological dynamics. Although deep brain stimulation is becoming increasingly popular for treating Parkinson's disease, all of the present stimulation scenarios involve open-loop stimulation that does not take into account the brain's dynamics through feedback.Most engineering control systems, such as automobile cruise controls, make use of variants of proportional-integral-differential (PID) control strategies in response to a measured quantity. We here design an optimized PID controller for Parkinson's disease modulation.We adapted the sparse-structured model of a small network of synaptically coupled neurons in several basal ganglia areas, originally described by [4], to an efficient structured Matlab implementation. The major outputs from the basal ganglia are inhibitory signals from the globus pallidus interna (GPi) to its localized target areas within thalamus. Correspondingly, a natural view is that parkinsonian basal ganglia activity is transduced into motor symptoms through effects on thalamic dynamics. Specifically, computational [2] and data-based [1] analysis shows that pathological GPi synaptic outputs can compromise thalamic relay of excitatory signals, as can be assessed by calculation of a reliability index or by estimation of GPi output patterns.We assume an overarching principle for control in Parkinson's disease – we never want to put more than 1 multicontact electrode shaft in the brain. We start with GPi as a target, since the clinical differences between GPi and STN stimulation effects have not been well documented in controlled studies, and the GPi is a larger and easier target into which to insert stereotactic electrodes (see discussion in [3]). We set up 2 empirical control schemes: 1) a reliability control based upon the fraction of the sensorimotor spikes, accurately relayed 1-for-1 by the thalamic cells, and a GPi synaptic control based upon the estimated effective output of the GPi.We contrast several proportional control schemes based upon reliability: a frequency-proportional case, and a frequency-proportional-biased case. Although the energy expenditure is almost identical for both cases, the reliability is higher with adding a bias term.We contrast several proportional control schemes using a GPi output controller. Using an amplitude-proportional-derivative control scheme, where the error is equal to the instantaneous calculated GPi synaptic output minus the average GPi output. We flip the sign of the derivative term, from positive to negative, to explore whether amplifying or suppressing the instantaneous response to the differential error is best. Use of a negative differential coefficient yields substantially greater reliability and lower energy expenditure.Finally, we exhaustively optimize a PID controller using proportional, derivative, and integral terms, as shown in as shown in Figure Figure11.Figure 1Thalamic reliability as a function of derivative, kd, and integral, ki, terms following exhaustive optimization.We have shown the feasibility of rational PID controller design for Parkinson's disease. Both reliability, and GPi synaptic outputs, can be estimated from reduced model based sensors, and the results of the PID scheme instituted in trials with real feedback controllers. Developing these reduced models for incorporation into future devices is the next step of this research." @default.
- W2073307540 created "2016-06-24" @default.
- W2073307540 creator A5014142623 @default.
- W2073307540 creator A5033759687 @default.
- W2073307540 creator A5089807534 @default.
- W2073307540 date "2011-07-18" @default.
- W2073307540 modified "2023-10-17" @default.
- W2073307540 title "A cruise control for Parkinson's disease" @default.
- W2073307540 cites W2029754211 @default.
- W2073307540 cites W2107199167 @default.
- W2073307540 cites W2112704483 @default.
- W2073307540 doi "https://doi.org/10.1186/1471-2202-12-s1-p304" @default.
- W2073307540 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3240417" @default.
- W2073307540 hasPublicationYear "2011" @default.
- W2073307540 type Work @default.
- W2073307540 sameAs 2073307540 @default.
- W2073307540 citedByCount "0" @default.
- W2073307540 crossrefType "journal-article" @default.
- W2073307540 hasAuthorship W2073307540A5014142623 @default.
- W2073307540 hasAuthorship W2073307540A5033759687 @default.
- W2073307540 hasAuthorship W2073307540A5089807534 @default.
- W2073307540 hasBestOaLocation W20733075401 @default.
- W2073307540 hasConcept C111368507 @default.
- W2073307540 hasConcept C113168747 @default.
- W2073307540 hasConcept C126322002 @default.
- W2073307540 hasConcept C127313418 @default.
- W2073307540 hasConcept C154945302 @default.
- W2073307540 hasConcept C15744967 @default.
- W2073307540 hasConcept C169760540 @default.
- W2073307540 hasConcept C188147891 @default.
- W2073307540 hasConcept C2775924081 @default.
- W2073307540 hasConcept C2778821358 @default.
- W2073307540 hasConcept C2779134260 @default.
- W2073307540 hasConcept C2779734285 @default.
- W2073307540 hasConcept C41008148 @default.
- W2073307540 hasConcept C71924100 @default.
- W2073307540 hasConcept C99508421 @default.
- W2073307540 hasConceptScore W2073307540C111368507 @default.
- W2073307540 hasConceptScore W2073307540C113168747 @default.
- W2073307540 hasConceptScore W2073307540C126322002 @default.
- W2073307540 hasConceptScore W2073307540C127313418 @default.
- W2073307540 hasConceptScore W2073307540C154945302 @default.
- W2073307540 hasConceptScore W2073307540C15744967 @default.
- W2073307540 hasConceptScore W2073307540C169760540 @default.
- W2073307540 hasConceptScore W2073307540C188147891 @default.
- W2073307540 hasConceptScore W2073307540C2775924081 @default.
- W2073307540 hasConceptScore W2073307540C2778821358 @default.
- W2073307540 hasConceptScore W2073307540C2779134260 @default.
- W2073307540 hasConceptScore W2073307540C2779734285 @default.
- W2073307540 hasConceptScore W2073307540C41008148 @default.
- W2073307540 hasConceptScore W2073307540C71924100 @default.
- W2073307540 hasConceptScore W2073307540C99508421 @default.
- W2073307540 hasIssue "S1" @default.
- W2073307540 hasLocation W20733075401 @default.
- W2073307540 hasLocation W20733075402 @default.
- W2073307540 hasLocation W20733075403 @default.
- W2073307540 hasOpenAccess W2073307540 @default.
- W2073307540 hasPrimaryLocation W20733075401 @default.
- W2073307540 hasRelatedWork W1994140610 @default.
- W2073307540 hasRelatedWork W2106304681 @default.
- W2073307540 hasRelatedWork W2338128126 @default.
- W2073307540 hasRelatedWork W2378824822 @default.
- W2073307540 hasRelatedWork W2748952813 @default.
- W2073307540 hasRelatedWork W2899084033 @default.
- W2073307540 hasRelatedWork W3123454098 @default.
- W2073307540 hasRelatedWork W4210868502 @default.
- W2073307540 hasRelatedWork W571859658 @default.
- W2073307540 hasRelatedWork W584268533 @default.
- W2073307540 hasVolume "12" @default.
- W2073307540 isParatext "false" @default.
- W2073307540 isRetracted "false" @default.
- W2073307540 magId "2073307540" @default.
- W2073307540 workType "article" @default.