Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073311194> ?p ?o ?g. }
- W2073311194 endingPage "30" @default.
- W2073311194 startingPage "21" @default.
- W2073311194 abstract "Reconnaissance soil maps at 1:250,000 scale are the most detailed source of soil information for large parts of France. For many environmental applications, however, the level of detail and accuracy of these maps is insufficient. Funds are lacking to refine and update these maps by traditional soil survey. In this study we investigated the merit of digital soil mapping to refine and improve the 1:250,000 reconnaissance soil map of a 1580 km2 area in Haute-Normandie, France. The soil map was produced in 1988 and distinguishes nine soil class units. The approach taken was to predict soil class from a large number of environmental covariates using regression techniques. The covariates used include DEM derivatives, geology and land cover maps. Because very few soil point observations were available within the area, we calibrated the regression model by sampling the soil map on a grid. We calibrated three models: classification tree (CT), multinomial logistic regression (MLR) and random forests (RF), and used these models to predict the nine soil classes across the study area. The new and original maps were validated with field data from 123 locations selected with a stratified simple random sampling design. For MLR, the estimate of the overall purity was 65.9%, while that of the reconnaissance map was 55.5%. The difference between the purity estimates of these maps was statistically significant (p = 0.014). The significant improvement over the existing soil map is remarkable because the regression model was calibrated with the existing soil map and uses no additional soil observations." @default.
- W2073311194 created "2016-06-24" @default.
- W2073311194 creator A5031737926 @default.
- W2073311194 creator A5037512666 @default.
- W2073311194 creator A5043279379 @default.
- W2073311194 creator A5059902093 @default.
- W2073311194 creator A5068221180 @default.
- W2073311194 creator A5071470774 @default.
- W2073311194 creator A5072356937 @default.
- W2073311194 date "2014-09-01" @default.
- W2073311194 modified "2023-09-25" @default.
- W2073311194 title "Refining a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France)" @default.
- W2073311194 cites W1915446817 @default.
- W2073311194 cites W1975337890 @default.
- W2073311194 cites W1976193075 @default.
- W2073311194 cites W1990624991 @default.
- W2073311194 cites W1998103565 @default.
- W2073311194 cites W2013725197 @default.
- W2073311194 cites W2014501722 @default.
- W2073311194 cites W2017913007 @default.
- W2073311194 cites W2027160099 @default.
- W2073311194 cites W2028886598 @default.
- W2073311194 cites W2030172808 @default.
- W2073311194 cites W2032793895 @default.
- W2073311194 cites W2044983162 @default.
- W2073311194 cites W2050179592 @default.
- W2073311194 cites W2054325787 @default.
- W2073311194 cites W2066383725 @default.
- W2073311194 cites W2066682742 @default.
- W2073311194 cites W2066722804 @default.
- W2073311194 cites W2070230130 @default.
- W2073311194 cites W2074414809 @default.
- W2073311194 cites W2083739595 @default.
- W2073311194 cites W2084028661 @default.
- W2073311194 cites W2123723449 @default.
- W2073311194 cites W2126256478 @default.
- W2073311194 cites W2139273826 @default.
- W2073311194 cites W2153944160 @default.
- W2073311194 cites W2158613289 @default.
- W2073311194 cites W2911964244 @default.
- W2073311194 doi "https://doi.org/10.1016/j.geodrs.2014.07.001" @default.
- W2073311194 hasPublicationYear "2014" @default.
- W2073311194 type Work @default.
- W2073311194 sameAs 2073311194 @default.
- W2073311194 citedByCount "36" @default.
- W2073311194 countsByYear W20733111942016 @default.
- W2073311194 countsByYear W20733111942017 @default.
- W2073311194 countsByYear W20733111942018 @default.
- W2073311194 countsByYear W20733111942019 @default.
- W2073311194 countsByYear W20733111942020 @default.
- W2073311194 countsByYear W20733111942021 @default.
- W2073311194 countsByYear W20733111942022 @default.
- W2073311194 countsByYear W20733111942023 @default.
- W2073311194 crossrefType "journal-article" @default.
- W2073311194 hasAuthorship W2073311194A5031737926 @default.
- W2073311194 hasAuthorship W2073311194A5037512666 @default.
- W2073311194 hasAuthorship W2073311194A5043279379 @default.
- W2073311194 hasAuthorship W2073311194A5059902093 @default.
- W2073311194 hasAuthorship W2073311194A5068221180 @default.
- W2073311194 hasAuthorship W2073311194A5071470774 @default.
- W2073311194 hasAuthorship W2073311194A5072356937 @default.
- W2073311194 hasConcept C127313418 @default.
- W2073311194 hasConcept C147789679 @default.
- W2073311194 hasConcept C159390177 @default.
- W2073311194 hasConcept C159750122 @default.
- W2073311194 hasConcept C185592680 @default.
- W2073311194 hasConcept C187320778 @default.
- W2073311194 hasConcept C205649164 @default.
- W2073311194 hasConcept C39432304 @default.
- W2073311194 hasConcept C58640448 @default.
- W2073311194 hasConcept C60044698 @default.
- W2073311194 hasConcept C62649853 @default.
- W2073311194 hasConcept C71864017 @default.
- W2073311194 hasConcept C76886044 @default.
- W2073311194 hasConceptScore W2073311194C127313418 @default.
- W2073311194 hasConceptScore W2073311194C147789679 @default.
- W2073311194 hasConceptScore W2073311194C159390177 @default.
- W2073311194 hasConceptScore W2073311194C159750122 @default.
- W2073311194 hasConceptScore W2073311194C185592680 @default.
- W2073311194 hasConceptScore W2073311194C187320778 @default.
- W2073311194 hasConceptScore W2073311194C205649164 @default.
- W2073311194 hasConceptScore W2073311194C39432304 @default.
- W2073311194 hasConceptScore W2073311194C58640448 @default.
- W2073311194 hasConceptScore W2073311194C60044698 @default.
- W2073311194 hasConceptScore W2073311194C62649853 @default.
- W2073311194 hasConceptScore W2073311194C71864017 @default.
- W2073311194 hasConceptScore W2073311194C76886044 @default.
- W2073311194 hasLocation W20733111941 @default.
- W2073311194 hasLocation W20733111942 @default.
- W2073311194 hasOpenAccess W2073311194 @default.
- W2073311194 hasPrimaryLocation W20733111941 @default.
- W2073311194 hasRelatedWork W2022420161 @default.
- W2073311194 hasRelatedWork W2026688281 @default.
- W2073311194 hasRelatedWork W2037995797 @default.
- W2073311194 hasRelatedWork W2116047388 @default.
- W2073311194 hasRelatedWork W2169359701 @default.
- W2073311194 hasRelatedWork W2765136040 @default.
- W2073311194 hasRelatedWork W2793572154 @default.