Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073313621> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2073313621 abstract "We collect data from the HIV Resistance Drug Database and, based on CD4+ and viral load measures, together with RNA sequences of the reverse transcriptase and of the protease of the virus, we design models using machine learning techniques MultiLayer Perception (MLP), Radial Basis Function (RBF), and Support Vector Machine (SVM), to predict the patient's response to anti-HIV treatment. In this work we applied the SMOTE Algorithm to deal with the enormous difference between the number of case and control samples, which was crucial for the accuracy of the models. Our results show that the SVM model proved more accurate than the other two, with a ROC curve area of 0.9398. We observe that, from 1000 patients, there are 646 samples for which the three methods delivered correct predictions. On the other hand, for 69 patients all three models fail. We analyzed the data for those patients more carefully, and we identified codons and properties that are important for a response/non-response result. Among the codons that our models identified, there are several with strong support from the literature and also a few new ones. Our analysis offers numerous insights that can be very useful to the prediction of patients' response to anti-HIV therapies in the future." @default.
- W2073313621 created "2016-06-24" @default.
- W2073313621 creator A5025444762 @default.
- W2073313621 creator A5029119017 @default.
- W2073313621 creator A5029802032 @default.
- W2073313621 creator A5049869228 @default.
- W2073313621 date "2014-07-01" @default.
- W2073313621 modified "2023-09-27" @default.
- W2073313621 title "Insights on prediction of patients' response to anti-HIV therapies through machine learning" @default.
- W2073313621 cites W11765363 @default.
- W2073313621 cites W189249785 @default.
- W2073313621 cites W1996423252 @default.
- W2073313621 cites W1998698366 @default.
- W2073313621 cites W2009419809 @default.
- W2073313621 cites W2036836781 @default.
- W2073313621 cites W2043810515 @default.
- W2073313621 cites W2073569077 @default.
- W2073313621 cites W2074302571 @default.
- W2073313621 cites W2099116831 @default.
- W2073313621 cites W2101654079 @default.
- W2073313621 cites W2103496339 @default.
- W2073313621 cites W2107138643 @default.
- W2073313621 cites W2127322768 @default.
- W2073313621 cites W2131218326 @default.
- W2073313621 cites W2132471816 @default.
- W2073313621 cites W2136431383 @default.
- W2073313621 cites W2148143831 @default.
- W2073313621 cites W2150215096 @default.
- W2073313621 cites W2150464933 @default.
- W2073313621 cites W2163166304 @default.
- W2073313621 cites W2169150541 @default.
- W2073313621 cites W2182593161 @default.
- W2073313621 cites W2292129940 @default.
- W2073313621 cites W2318958333 @default.
- W2073313621 doi "https://doi.org/10.1109/ijcnn.2014.6889659" @default.
- W2073313621 hasPublicationYear "2014" @default.
- W2073313621 type Work @default.
- W2073313621 sameAs 2073313621 @default.
- W2073313621 citedByCount "3" @default.
- W2073313621 countsByYear W20733136212018 @default.
- W2073313621 crossrefType "proceedings-article" @default.
- W2073313621 hasAuthorship W2073313621A5025444762 @default.
- W2073313621 hasAuthorship W2073313621A5029119017 @default.
- W2073313621 hasAuthorship W2073313621A5029802032 @default.
- W2073313621 hasAuthorship W2073313621A5049869228 @default.
- W2073313621 hasConcept C119857082 @default.
- W2073313621 hasConcept C12267149 @default.
- W2073313621 hasConcept C154945302 @default.
- W2073313621 hasConcept C203014093 @default.
- W2073313621 hasConcept C3013748606 @default.
- W2073313621 hasConcept C41008148 @default.
- W2073313621 hasConcept C50644808 @default.
- W2073313621 hasConcept C71924100 @default.
- W2073313621 hasConcept C98856871 @default.
- W2073313621 hasConceptScore W2073313621C119857082 @default.
- W2073313621 hasConceptScore W2073313621C12267149 @default.
- W2073313621 hasConceptScore W2073313621C154945302 @default.
- W2073313621 hasConceptScore W2073313621C203014093 @default.
- W2073313621 hasConceptScore W2073313621C3013748606 @default.
- W2073313621 hasConceptScore W2073313621C41008148 @default.
- W2073313621 hasConceptScore W2073313621C50644808 @default.
- W2073313621 hasConceptScore W2073313621C71924100 @default.
- W2073313621 hasConceptScore W2073313621C98856871 @default.
- W2073313621 hasLocation W20733136211 @default.
- W2073313621 hasOpenAccess W2073313621 @default.
- W2073313621 hasPrimaryLocation W20733136211 @default.
- W2073313621 hasRelatedWork W1990993726 @default.
- W2073313621 hasRelatedWork W2022089846 @default.
- W2073313621 hasRelatedWork W2130558512 @default.
- W2073313621 hasRelatedWork W2747271593 @default.
- W2073313621 hasRelatedWork W2749602957 @default.
- W2073313621 hasRelatedWork W2807305025 @default.
- W2073313621 hasRelatedWork W2808599266 @default.
- W2073313621 hasRelatedWork W2933013505 @default.
- W2073313621 hasRelatedWork W2940596626 @default.
- W2073313621 hasRelatedWork W2992551937 @default.
- W2073313621 hasRelatedWork W2997763578 @default.
- W2073313621 hasRelatedWork W3021042630 @default.
- W2073313621 hasRelatedWork W3096840334 @default.
- W2073313621 hasRelatedWork W3136764492 @default.
- W2073313621 hasRelatedWork W3155464187 @default.
- W2073313621 hasRelatedWork W3193897134 @default.
- W2073313621 hasRelatedWork W3196459858 @default.
- W2073313621 hasRelatedWork W3198218375 @default.
- W2073313621 hasRelatedWork W3200655815 @default.
- W2073313621 hasRelatedWork W2189049414 @default.
- W2073313621 isParatext "false" @default.
- W2073313621 isRetracted "false" @default.
- W2073313621 magId "2073313621" @default.
- W2073313621 workType "article" @default.