Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073399794> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2073399794 endingPage "330" @default.
- W2073399794 startingPage "330" @default.
- W2073399794 abstract "<h3>Background</h3> There are three common causes of Transient Loss of Consciousness (TLOC), syncope, epileptic and psychogenic nonepileptic seizures (PNES). Many individuals who have experienced TLOC initially receive an incorrect diagnosis and inappropriate treatment. Whereas syncope can be distinguished from the other two causes relatively easily with a small number of yes/no questions, the differentiation of the other two causes of TLOC is more challenging. Previous qualitative research based on the methodology of Conversation Analysis has demonstrated that epileptic and nonepileptic seizures are described differently when patients talk to clinicians about their TLOC experiences. One particularly prominent difference is that epileptic seizure descriptions are characterised by more formulation effort than accounts of nonepileptic seizures. <h3>Aim</h3> This research investigates whether features likely to reflect the level of formulation effort can be automatically elicited from audio recordings and transcripts of speech and used to differentiate between epileptic and nonepileptic seizures. <h3>Method</h3> Verbatim transcripts of conversations between patients and neurologists were manually produced from video and audio recordings of interactions with 45 patients (21 epilepsy and24 PNES). The subsection of each transcript containing the patients account of their first seizure was manually extracted for the analysis. Seven automatically detectable features were designed as markers of formulation effort. These features were used to train a Random Forest machine learning classifier. <h3>Results</h3> There were significantly more hesitations and repetitions in descriptions of first epileptic than nonepileptic seizures. Using a nested leave-one-out cross validation approach, 71% of seizures were correctly classified by the Random Forest classifier. <h3>Conclusions</h3> This pilot study provides proof of principle that linguistic features that have been automatically extracted from audio recordings and transcripts could be used to distinguish between epileptic seizures and PNES and thereby contribute to the differential diagnosis of TLOC. Future research should explore whether additional observations can be incorporated into a diagnostic stratification tool. Moreover, future research should explore the performance of these features when they have been extracted from transcripts produced by automatic speech recognition and when they are combined with additional information provided by patients and witnesses about seizure manifestations and medical history." @default.
- W2073399794 created "2016-06-24" @default.
- W2073399794 creator A5083044590 @default.
- W2073399794 date "1997-12-01" @default.
- W2073399794 modified "2023-09-27" @default.
- W2073399794 title "Immunoglobulin Genes. 2nd edn" @default.
- W2073399794 doi "https://doi.org/10.1136/mp.50.6.330-a" @default.
- W2073399794 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/379672" @default.
- W2073399794 hasPublicationYear "1997" @default.
- W2073399794 type Work @default.
- W2073399794 sameAs 2073399794 @default.
- W2073399794 citedByCount "7" @default.
- W2073399794 crossrefType "journal-article" @default.
- W2073399794 hasAuthorship W2073399794A5083044590 @default.
- W2073399794 hasBestOaLocation W20733997941 @default.
- W2073399794 hasConcept C118552586 @default.
- W2073399794 hasConcept C154945302 @default.
- W2073399794 hasConcept C15744967 @default.
- W2073399794 hasConcept C160146798 @default.
- W2073399794 hasConcept C169760540 @default.
- W2073399794 hasConcept C186720457 @default.
- W2073399794 hasConcept C2777200299 @default.
- W2073399794 hasConcept C2778186239 @default.
- W2073399794 hasConcept C2779334592 @default.
- W2073399794 hasConcept C41008148 @default.
- W2073399794 hasConcept C46312422 @default.
- W2073399794 hasConcept C95623464 @default.
- W2073399794 hasConceptScore W2073399794C118552586 @default.
- W2073399794 hasConceptScore W2073399794C154945302 @default.
- W2073399794 hasConceptScore W2073399794C15744967 @default.
- W2073399794 hasConceptScore W2073399794C160146798 @default.
- W2073399794 hasConceptScore W2073399794C169760540 @default.
- W2073399794 hasConceptScore W2073399794C186720457 @default.
- W2073399794 hasConceptScore W2073399794C2777200299 @default.
- W2073399794 hasConceptScore W2073399794C2778186239 @default.
- W2073399794 hasConceptScore W2073399794C2779334592 @default.
- W2073399794 hasConceptScore W2073399794C41008148 @default.
- W2073399794 hasConceptScore W2073399794C46312422 @default.
- W2073399794 hasConceptScore W2073399794C95623464 @default.
- W2073399794 hasIssue "6" @default.
- W2073399794 hasLocation W20733997941 @default.
- W2073399794 hasLocation W20733997942 @default.
- W2073399794 hasLocation W20733997943 @default.
- W2073399794 hasOpenAccess W2073399794 @default.
- W2073399794 hasPrimaryLocation W20733997941 @default.
- W2073399794 hasRelatedWork W112087294 @default.
- W2073399794 hasRelatedWork W2013434230 @default.
- W2073399794 hasRelatedWork W2063063832 @default.
- W2073399794 hasRelatedWork W2322801808 @default.
- W2073399794 hasRelatedWork W2415720146 @default.
- W2073399794 hasRelatedWork W2889884521 @default.
- W2073399794 hasRelatedWork W3029960638 @default.
- W2073399794 hasRelatedWork W3160398142 @default.
- W2073399794 hasRelatedWork W4312337845 @default.
- W2073399794 hasRelatedWork W3081534440 @default.
- W2073399794 hasVolume "50" @default.
- W2073399794 isParatext "false" @default.
- W2073399794 isRetracted "false" @default.
- W2073399794 magId "2073399794" @default.
- W2073399794 workType "article" @default.