Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073461319> ?p ?o ?g. }
- W2073461319 endingPage "550" @default.
- W2073461319 startingPage "529" @default.
- W2073461319 abstract "Purpose The purpose of this paper is to review the available reduced order modeling approaches in the literature for predicting the flow and specially temperature fields inside data centers in terms of the involved design parameters. Design/methodology/approach This paper begins with a motivation for flow/thermal modeling needs for designing an energy‐efficient thermal management system in data centers. Recent studies on air velocity and temperature field simulations in data centers through computational fluid dynamics/heat transfer (CFD/HT) are reviewed. Meta‐modeling and reduced order modeling are tools to generate accurate and rapid surrogate models for a complex system. These tools, with a focus on low‐dimensional models of turbulent flows are reviewed. Reduced order modeling techniques based on turbulent coherent structures identification, in particular the proper orthogonal decomposition (POD) are explained and reviewed in more details. Then, the available approaches for rapid thermal modeling of data centers are reviewed. Finally, recent studies on generating POD‐based reduced order thermal models of data centers are reviewed and representative results are presented and compared for a case study. Findings It is concluded that low‐dimensional models are needed in order to predict the multi‐parameter dependent thermal behavior of data centers accurately and rapidly for design and control purposes. POD‐based techniques have shown great approximation for multi‐parameter thermal modeling of data centers. It is believed that wavelet‐based techniques due to the their ability to separate between coherent and incoherent structures – something that POD cannot do – can be considered as new promising tools for reduced order thermal modeling of complex electronic systems such as data centers Originality/value The paper reviews different numerical methods and provides the reader with some insight for reduced order thermal modeling of complex convective systems such as data centers." @default.
- W2073461319 created "2016-06-24" @default.
- W2073461319 creator A5000416769 @default.
- W2073461319 creator A5003076382 @default.
- W2073461319 date "2010-06-15" @default.
- W2073461319 modified "2023-10-09" @default.
- W2073461319 title "Reduced order thermal modeling of data centers via proper orthogonal decomposition: a review" @default.
- W2073461319 cites W1482732415 @default.
- W2073461319 cites W1529917160 @default.
- W2073461319 cites W1579236455 @default.
- W2073461319 cites W1975452069 @default.
- W2073461319 cites W1976389115 @default.
- W2073461319 cites W1980381995 @default.
- W2073461319 cites W1982122161 @default.
- W2073461319 cites W1990751784 @default.
- W2073461319 cites W1991413021 @default.
- W2073461319 cites W1996676541 @default.
- W2073461319 cites W1999501159 @default.
- W2073461319 cites W2000867276 @default.
- W2073461319 cites W2000915963 @default.
- W2073461319 cites W2001842014 @default.
- W2073461319 cites W2010336595 @default.
- W2073461319 cites W2015214513 @default.
- W2073461319 cites W2018044188 @default.
- W2073461319 cites W2019763723 @default.
- W2073461319 cites W2021135119 @default.
- W2073461319 cites W2033693003 @default.
- W2073461319 cites W2043670802 @default.
- W2073461319 cites W2051026502 @default.
- W2073461319 cites W2062262596 @default.
- W2073461319 cites W2069493590 @default.
- W2073461319 cites W2072506359 @default.
- W2073461319 cites W2074436853 @default.
- W2073461319 cites W2079585008 @default.
- W2073461319 cites W2080832364 @default.
- W2073461319 cites W2081265183 @default.
- W2073461319 cites W2083820783 @default.
- W2073461319 cites W2084819230 @default.
- W2073461319 cites W2088970880 @default.
- W2073461319 cites W2115620436 @default.
- W2073461319 cites W2116373360 @default.
- W2073461319 cites W2117944706 @default.
- W2073461319 cites W2120691045 @default.
- W2073461319 cites W2123739111 @default.
- W2073461319 cites W2131154911 @default.
- W2073461319 cites W2144878274 @default.
- W2073461319 cites W2145475762 @default.
- W2073461319 cites W2157464891 @default.
- W2073461319 cites W2158082510 @default.
- W2073461319 cites W2170224110 @default.
- W2073461319 cites W2171647451 @default.
- W2073461319 cites W2178887648 @default.
- W2073461319 cites W2315722698 @default.
- W2073461319 cites W2536745924 @default.
- W2073461319 cites W4229875153 @default.
- W2073461319 cites W4234337589 @default.
- W2073461319 cites W4246916037 @default.
- W2073461319 cites W4249753629 @default.
- W2073461319 cites W2071733427 @default.
- W2073461319 doi "https://doi.org/10.1108/09615531011048231" @default.
- W2073461319 hasPublicationYear "2010" @default.
- W2073461319 type Work @default.
- W2073461319 sameAs 2073461319 @default.
- W2073461319 citedByCount "27" @default.
- W2073461319 countsByYear W20734613192012 @default.
- W2073461319 countsByYear W20734613192013 @default.
- W2073461319 countsByYear W20734613192014 @default.
- W2073461319 countsByYear W20734613192015 @default.
- W2073461319 countsByYear W20734613192016 @default.
- W2073461319 countsByYear W20734613192017 @default.
- W2073461319 countsByYear W20734613192018 @default.
- W2073461319 countsByYear W20734613192019 @default.
- W2073461319 countsByYear W20734613192020 @default.
- W2073461319 countsByYear W20734613192021 @default.
- W2073461319 countsByYear W20734613192022 @default.
- W2073461319 crossrefType "journal-article" @default.
- W2073461319 hasAuthorship W2073461319A5000416769 @default.
- W2073461319 hasAuthorship W2073461319A5003076382 @default.
- W2073461319 hasConcept C121332964 @default.
- W2073461319 hasConcept C127413603 @default.
- W2073461319 hasConcept C146978453 @default.
- W2073461319 hasConcept C153294291 @default.
- W2073461319 hasConcept C1633027 @default.
- W2073461319 hasConcept C196558001 @default.
- W2073461319 hasConcept C202444582 @default.
- W2073461319 hasConcept C204530211 @default.
- W2073461319 hasConcept C2984998066 @default.
- W2073461319 hasConcept C33923547 @default.
- W2073461319 hasConcept C41008148 @default.
- W2073461319 hasConcept C50517652 @default.
- W2073461319 hasConcept C57879066 @default.
- W2073461319 hasConcept C9652623 @default.
- W2073461319 hasConceptScore W2073461319C121332964 @default.
- W2073461319 hasConceptScore W2073461319C127413603 @default.
- W2073461319 hasConceptScore W2073461319C146978453 @default.
- W2073461319 hasConceptScore W2073461319C153294291 @default.
- W2073461319 hasConceptScore W2073461319C1633027 @default.
- W2073461319 hasConceptScore W2073461319C196558001 @default.