Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073463418> ?p ?o ?g. }
- W2073463418 endingPage "32683" @default.
- W2073463418 startingPage "32679" @default.
- W2073463418 abstract "The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions. The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions. IntroductionThe fatty acid-binding proteins (FABPs) 3The abbreviations used are: FABPfatty acid-binding proteinLCFAlong-chain fatty acidLFABPliver FABPTGtriacylglycerolAFABPadipocyte FABPKFABPkeratinocyte FABPHSLhormone-sensitive lipasePApalmitateOAoleatePPARperoxisome proliferator-activated receptorERendoplasmic reticulumHFABPheart FABPPLphospholipidAAarachidonic acidPUFApolyunsaturated fatty acidDHAdocosahexaenoic acidBFABPbrain FABPRAretinoic acidIFABPintestinal FABPILBPileal bile acid-binding proteinPCTVprechylomicron transport vesicleMGmonoacylglycerol. are abundant intracellular proteins expressed in almost all tissues; nine separate genes have been identified in mammals. FABPs were named after the tissue in which they were discovered or are prominently expressed. This nomenclature can be misleading because several FABPs are expressed in more than one tissue, and a numerical nomenclature for the various FABPs has been introduced (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar). All FABPs exhibit high affinity binding of a single saturated or unsaturated long-chain fatty acid (LCFA; ≥14 carbons), with the exception of liver FABP (LFABP; FABP1), which binds two fatty acids or other hydrophobic molecules. Binding affinities correlate directly with fatty acid hydrophobicity (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 4Richieri G.V. Ogata R.T. Zimmerman A.W. Veerkamp J.H. Kleinfeld A.M. Biochemistry. 2000; 39: 7197-7204Crossref PubMed Scopus (144) Google Scholar). These small proteins (∼15 kDa) show only moderate amino acid sequence homology, ranging from 20 to 70%, yet they have highly similar tertiary structures. All have in common a 10-stranded antiparallel β-barrel structure. The ligand-binding pocket is located inside the β-barrel and is framed on one side by an N-terminal helix-turn-helix motif that is thought to act as the major portal for LCFA entry and exit (Fig. 1) (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar).Why are there multiple FABPs, then, when all have a similar fold and all bind LCFA? Other classes of lipid-binding proteins are typically ubiquitously expressed from a single gene. As will be discussed below, recent research has suggested that the FABPs have individual functions in their specific tissues. Although all FABPs are involved in fatty acid disposition, it is likely that the diverse nature of fatty acid function is reflected in the diversity of FABP expression in different tissues. These divergent functions may be driven, in part, by protein-protein and protein-membrane interactions that are tissue specific. This minireview will present hypotheses regarding the functions of FABPs in different tissues, evaluating the evidence obtained from cultured cells, structure-function analyses, and gene knock-out mice.Summary and PerspectiveThe functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well (Table 1). The functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well. Thus, despite similar ligand binding characteristics and highly homologous tertiary structures, each FABP appears to have unique functions in specific tissues. Overall, the FABPs function as intracellular LCFA trafficking proteins between particular subcellular sites. The transport properties of the FABPs are governed in part by specific protein-protein and protein-membrane interactions, and the helix-turn-helix domain of the FABPs is critical although likely not exclusive in specifying these interactions. Several of the FABPs have been shown to deliver their ligands to nuclear transcription factors, thus modulating gene expression in a tissue-specific manner. Cellular changes in gene expression and lipid metabolism brought about by the FABPs lead to changes in whole body energy homeostasis. Given the role of aberrant lipid metabolism in most if not all of the metabolic syndrome disorders, the FABPs may be envisioned as central regulators of lipid disposition at the cell and tissue levels that have a profound impact on systemic energy metabolism.TABLE 1FABP Tissue Distribution and Proposed Functional RolesFABP expressionFunctional rolesPhysiological end pointsRefs.Adipose tissue AFABP (very high levels), KFABP (very low levels)TG storage (interactions with HSL), regulation of fatty acid species abundance, interaction with PPAR nuclear receptors, inflammatory cytokine productionInsulin resistance, metabolic syndrome, inflammatory diseases1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 5Erbay E. Babaev V.R. Mayers J.R. Makowski L. Charles K.N. Snitow M.E. Fazio S. Wiest M.M. Watkins S.M. Linton M.F. Hotamisligil G.S. Nat. Med. 2009; 15: 1383-1391Crossref PubMed Scopus (387) Google Scholar, 6Shaughnessy S. Smith E.R. Kodukula S. Storch J. Fried S.K. Diabetes. 2000; 49: 904-911Crossref PubMed Scopus (84) Google Scholar, 7Coe N.R. Simpson M.A. Bernlohr D.A. J. Lipid Res. 1999; 40: 967-972Abstract Full Text Full Text PDF PubMed Google Scholar, 9Maeda K. Cao H. Kono K. Gorgun C.Z. Furuhashi M. Uysal K.T. Cao Q. Atsumi G. Malone H. Krishnan B. Minokoshi Y. Kahn B.B. Parker R.A. Hotamisligil G.S. Cell Metab. 2005; 1: 107-119Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar, 10Smith A.J. Sanders M.A. Juhlmann B.E. Hertzel A.V. Bernlohr D.A. J. Biol. Chem. 2008; 283: 33536-33543Abstract Full Text Full Text PDF PubMed Scopus (33) Google Scholar, 11Cao H. Gerhold K. Mayers J.R. Wiest M.M. Watkins S.M. Hotamisligil G.S. Cell. 2008; 134: 933-944Abstract Full Text Full Text PDF PubMed Scopus (799) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 13Gillilan R.E. Ayers S.D. Noy N. J. Mol. Biol. 2007; 372: 1246-1260Crossref PubMed Scopus (114) Google ScholarMacrophages AFABP and KFABPInflammatory cytokine production, mediation of ER stress response, interaction with PPARγ nuclear receptors, interaction with JAK2 signaling pathwayDiet-induced atherosclerosis, other inflammatory diseases5Erbay E. Babaev V.R. Mayers J.R. Makowski L. Charles K.N. Snitow M.E. Fazio S. Wiest M.M. Watkins S.M. Linton M.F. Hotamisligil G.S. Nat. Med. 2009; 15: 1383-1391Crossref PubMed Scopus (387) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 13Gillilan R.E. Ayers S.D. Noy N. J. Mol. Biol. 2007; 372: 1246-1260Crossref PubMed Scopus (114) Google Scholar, 14Layne M.D. Patel A. Chen Y.H. Rebel V.I. Carvajal I.M. Pellacani A. Ith B. Zhao D. Schreiber B.M. Yet S.F. Lee M.E. Storch J. Perrella M.A. FASEB J. 2001; 15: 2733-2735Crossref PubMed Scopus (55) Google Scholar, 15Hui X. Li H. Zhou Z. Lam K.S. Xiao Y. Wu D. Ding K. Wang Y. Vanhoutte P.M. Xu A. J. Biol. Chem. 2010; 285: 10273-10280Abstract Full Text Full Text PDF PubMed Scopus (123) Google ScholarLiver LFABPLCFA transport linked to β-oxidation, interaction with PPARα nuclear receptorsDevelopment of metabolic syndrome and exacerbation of obesity, reduction of liver cholesterol and bile acid pools2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 39Newberry E.P. Xie Y. Kennedy S.M. Luo J. Davidson N.O. Hepatology. 2006; 44: 1191-1205Crossref PubMed Scopus (172) Google Scholar, 40Erol E. Kumar L.S. Cline G.W. Shulman G.I. Kelly D.P. Binas B. FASEB J. 2004; 18: 347-349Crossref PubMed Google Scholar, 41Newberry E.P. Xie Y. Kennedy S. Han X. Buhman K.K. Luo J. Gross R.W. Davidson N.O. J. Biol. Chem. 2003; 278: 51664-51672Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar, 42Atshaves B.P. McIntosh A.L. Storey S.M. Landrock K.K. Kier A.B. Schroeder F. Lipids. 2010; 45: 97-110Crossref PubMed Scopus (38) Google Scholar, 43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 44Hostetler H.A. McIntosh A.L. Atshaves B.P. Storey S.M. Payne H.R. Kier A.B. Schroeder F. J. Lipid Res. 2009; 50: 1663-1675Abstract Full Text Full Text PDF PubMed Scopus (115) Google Scholar, 45Wolfrum C. Cell. Mol. Life Sci. 2007; 64: 2465-2476Crossref PubMed Scopus (36) Google Scholar, 46McIntosh A.L. Atshaves B.P. Hostetler H.A. Huang H. Davis J. Lyuksyutova O.I. Landrock D. Kier A.B. Schroeder F. Arch. Biochem. Biophys. 2009; 485: 160-173Crossref PubMed Scopus (44) Google ScholarIntestine IFABPLCFA partitioning toward TG synthesisProtection against obesity, hypertriglyceridemia, liver TG accumulation, and metabolic syndrome8Storch J. Corsico B. Annu. Rev. Nutr. 2008; 28: 73-95Crossref PubMed Scopus (310) Google Scholar, 43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 47Vassileva G. Huwyler L. Poirier K. Agellon L.B. Toth M.J. FASEB J. 2000; 14: 2040-2046Crossref PubMed Scopus (145) Google Scholar, 48Agellon L.B. Drozdowski L. Li L. Iordache C. Luong L. Clandinin M.T. Uwiera R.R. Toth M.J. Thomson A.B. Biochim. Biophys. Acta. 2007; 1771: 1283-1288Crossref PubMed Scopus (25) Google Scholar, 52Lagakos W. Storch J. Zhou Y.X. Russnak T. Agellon L. FASEB J. 2009; 23: 521Crossref Google Scholar, 53Levy E. Ménard D. Delvin E. Montoudis A. Beaulieu J.F. Mailhot G. Dubé N. Sinnett D. Seidman E. Bendayan M. Histochem. Cell Biol. 2009; 132: 351-367Crossref PubMed Scopus (57) Google Scholar, 54Montoudis A. Seidman E. Boudreau F. Beaulieu J.F. Menard D. Elchebly M. Mailhot G. Sane A.T. Lambert M. Delvin E. Levy E. J. Lipid Res. 2008; 49: 961-972Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar, 55Baier L.J. Sacchettini J.C. Knowler W.C. Eads J. Paolisso G. Tataranni P.A. Mochizuki H. Bennett P.H. Bogardus C. Prochazka M. Bennett P.H. J. Clin. Invest. 1995; 95: 1281-1287Crossref PubMed Scopus (335) Google Scholar ILBPBile acid transport47Vassileva G. Huwyler L. Poirier K. Agellon L.B. Toth M.J. FASEB J. 2000; 14: 2040-2046Crossref PubMed Scopus (145) Google Scholar, 48Agellon L.B. Drozdowski L. Li L. Iordache C. Luong L. Clandinin M.T. Uwiera R.R. Toth M.J. Thomson A.B. Biochim. Biophys. Acta. 2007; 1771: 1283-1288Crossref PubMed Scopus (25) Google Scholar LFABPLCFA transport linked to β-oxidation. MG incorporation into PLs, part of PCTV membrane budding complexChylomicron biogenesis43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 49Neeli I. Siddiqi S.A. Siddiqi S. Mahan J. Lagakos W.S. Binas B. Gheyi T. Storch J. Mansbach 2nd, C.M. J. Biol. Chem. 2007; 282: 17974-17984Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar, 50Siddiqi S. Saleem U. Abumrad N.A. Davidson N.O. Storch J. Siddiqi S.A. Mansbach 2nd, C.M. J. Lipid Res. 2010; 51: 1918-1928Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 51Lagakos W.S. Storch J. Zhou Y.X. Mandap B. Binas B. FASEB J. 2007; 21: LB35Crossref Google ScholarBrain Central nervous systemaExpression of FABPs in the central nervous system shows spatiotemporal distribution patterns, as described in the text.BFABPNeural utilization of DHA in membrane synthesis and signalingProliferation of neural progenitor cells and midterm stages of embryonic development; initial differentiation of neural cells; linked to schizophrenia, bipolar disorder, Down syndrome, and emotional behavior3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 24Chalon S. Prostaglandins Leukot. Essent. Fatty Acids. 2006; 75: 259-269Abstract Full Text Full Text PDF PubMed Scopus (340) Google Scholar, 25Cheon M.S. Kim S.H. Fountoulakis M. Lubec G. J. Neural Transm. Suppl. 2003; 67: 225-234Crossref Scopus (46) Google Scholar, 28Boneva N.B. Kaplamadzhiev D.B. Sahara S. Kikuchi H. Pyko I.V. Kikuchi M. Tonchev A.B. Yamashima T. Hippocampus. 2010; (in press)Google Scholar, 29Hanhoff T. Lücke C. Spener F. Mol. Cell. Biochem. 2002; 239: 45-54Crossref PubMed Scopus (164) Google Scholar, 30Xu L.Z. Sánchez R. Sali A. Heintz N. J. Biol. Chem. 1996; 271: 24711-24719Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar, 31Balendiran G.K. Schnutgen F. Scapin G. Borchers T. Xhong N. Lim K. Godbout R. Spener F. Sacchettini J.C. J. Biol. Chem. 2000; 275: 27045-27054Abstract Full Text Full Text PDF PubMed Google ScholarHFABPIncorporation of AA into brain PLs, maintenance of ω6/ω3-PUFA balanceMaintenance of differentiation status of adult brain, linked to Down syndrome, Alzheimer disease, and neurological function3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 22Myers-Payne S.C. Hubbell T. Pu L. Schnütgen F. Börchers T. Wood W.G. Spener F. Schroeder F. J. Neurochem. 1996; 66: 1648-1656Crossref PubMed Scopus (56) Google Scholar, 23Murphy E.J. Owada Y. Kitanaka N. Kondo H. Glatz J.F. Biochemistry. 2005; 44: 6350-6360Crossref PubMed Scopus (76) Google Scholar, 25Cheon M.S. Kim S.H. Fountoulakis M. Lubec G. J. Neural Transm. Suppl. 2003; 67: 225-234Crossref Scopus (46) Google Scholar, 26Watanabe A. Toyota T. Owada Y. Hayashi T. Iwayama Y. Matsumata M. Ishitsuka Y. Nakaya A. Maekawa M. Ohnishi T. Arai R. Sakurai K. Yamada K. Kondo H. Hashimoto K. Osumi N. Yoshikawa T. PLoS Biol. 2007; 5: e297Crossref PubMed Scopus (151) Google Scholar, 27Sánchez-Font M.F. Bosch-Comas A. Gonzàlez-Duarte R. Marfany G. Nucleic Acids Res. 2003; 31: 2769-2777Crossref PubMed Scopus (31) Google ScholarKFABPLCFA supply and membrane biogenesis, interaction with nuclear receptors (e.g. PPARβ/δ), utilization of RANeurite outgrowth and axon development, differentiation of neural cells, up-regulated under pathological conditions (e.g. nerve injury)3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 28Boneva N.B. Kaplamadzhiev D.B. Sahara S. Kikuchi H. Pyko I.V. Kikuchi M. Tonchev A.B. Yamashima T. Hippocampus. 2010; (in press)Google Scholar, 33De León M. Welcher A.A. Nahin R.H. Liu Y. Ruda M.A. Shooter E.M. Molina C.A. J. Neurosci. Res. 1996; 44: 283-292Crossref PubMed Scopus (0) Google Scholar, 34Liu J.W. Almaguel F.G. Bu L. De Leon D.D. De Leon M. J. Neurochem. 2008; 106: 2015-2029PubMed Google Scholar, 36Schug T.T. Berry D.C. Shaw N.S. Travis S.N. Noy N. Cell. 2007; 129: 723-733Abstract Full Text Full Text PDF PubMed Scopus (509) Google Scholar Peripheral nervous systemMFABPLCFA supply and membrane biogenesisDevelopment of myelin sheath21Trapp B.D. Dubois-Dalcq M. Quarles R.H. J. Neurochem. 1984; 43: 944-948Crossref PubMed Scopus (57) Google Scholar, 37Kursula P. Amino Acids. 2008; 34: 175-185Crossref PubMed Scopus (55) Google ScholarMuscle tissue CardiacHFABPLCFA transport linked to β-oxidation, trafficking of LCFA to specific PL pools, interaction with nuclear receptors (e.g. PPARα)Cardiomyocyte differentiation and inhibition of cardiomyocyte proliferation, lipid fuel utilization2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 16Tang M.K. Kindler P.M. Cai D.Q. Chow P.H. Li M. Lee K.K. Cell Tissue Res. 2004; 316: 339-347Crossref PubMed Scopus (27) Google Scholar, 17Schaap F.G. Binas B. Danneberg H. van der Vusse G.J. Glatz J.F. Circ. Res. 1999; 85: 329-337Crossref PubMed Scopus (163) Google Scholar, 18Binas B. Danneberg H. McWhir J. Mullins L. Clark A.J. FASEB J. 1999; 13: 805-812Crossref PubMed Scopus (237) Google Scholar SkeletalHFABPLCFA transport linked to β-oxidation and esterification, interaction with nuclear receptors (e.g. PPARα)Skeletal muscle differentiation2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 19Erol E. Cline G.W. Kim J.K. Taegtmeyer H. Binas B. Am. J. Physiol. Endocrinol. Metab. 2004; 287: E977-E982Crossref PubMed Scopus (17) Google Scholara Expression of FABPs in the central nervous system shows spatiotemporal distribution patterns, as described in the text. Open table in a new tab IntroductionThe fatty acid-binding proteins (FABPs) 3The abbreviations used are: FABPfatty acid-binding proteinLCFAlong-chain fatty acidLFABPliver FABPTGtriacylglycerolAFABPadipocyte FABPKFABPkeratinocyte FABPHSLhormone-sensitive lipasePApalmitateOAoleatePPARperoxisome proliferator-activated receptorERendoplasmic reticulumHFABPheart FABPPLphospholipidAAarachidonic acidPUFApolyunsaturated fatty acidDHAdocosahexaenoic acidBFABPbrain FABPRAretinoic acidIFABPintestinal FABPILBPileal bile acid-binding proteinPCTVprechylomicron transport vesicleMGmonoacylglycerol. are abundant intracellular proteins expressed in almost all tissues; nine separate genes have been identified in mammals. FABPs were named after the tissue in which they were discovered or are prominently expressed. This nomenclature can be misleading because several FABPs are expressed in more than one tissue, and a numerical nomenclature for the various FABPs has been introduced (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar). All FABPs exhibit high affinity binding of a single saturated or unsaturated long-chain fatty acid (LCFA; ≥14 carbons), with the exception of liver FABP (LFABP; FABP1), which binds two fatty acids or other hydrophobic molecules. Binding affinities correlate directly with fatty acid hydrophobicity (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 4Richieri G.V. Ogata R.T. Zimmerman A.W. Veerkamp J.H. Kleinfeld A.M. Biochemistry. 2000; 39: 7197-7204Crossref PubMed Scopus (144) Google Scholar). These small proteins (∼15 kDa) show only moderate amino acid sequence homology, ranging from 20 to 70%, yet they have highly similar tertiary structures. All have in common a 10-stranded antiparallel β-barrel structure. The ligand-binding pocket is located inside the β-barrel and is framed on one side by an N-terminal helix-turn-helix motif that is thought to act as the major portal for LCFA entry and exit (Fig. 1) (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar).Why are there multiple FABPs, then, when all have a similar fold and all bind LCFA? Other classes of lipid-binding proteins are typically ubiquitously expressed from a single gene. As will be discussed below, recent research has suggested that the FABPs have individual functions in their specific tissues. Although all FABPs are involved in fatty acid disposition, it is likely that the diverse nature of fatty acid function is reflected in the diversity of FABP expression in different tissues. These divergent functions may be driven, in part, by protein-protein and protein-membrane interactions that are tissue specific. This minireview will present hypotheses regarding the functions of FABPs in different tissues, evaluating the evidence obtained from cultured cells, structure-function analyses, and gene knock-out mice. The fatty acid-binding proteins (FABPs) 3The abbreviations used are: FABPfatty acid-binding proteinLCFAlong-chain fatty acidLFABPliver FABPTGtriacylglycerolAFABPadipocyte FABPKFABPkeratinocyte FABPHSLhormone-sensitive lipasePApalmitateOAoleatePPARperoxisome proliferator-activated receptorERendoplasmic reticulumHFABPheart FABPPLphospholipidAAarachidonic acidPUFApolyunsaturated fatty acidDHAdocosahexaenoic acidBFABPbrain FABPRAretinoic acidIFABPintestinal FABPILBPileal bile acid-binding proteinPCTVprechylomicron transport vesicleMGmonoacylglycerol. are abundant intracellular proteins expressed in almost all tissues; nine separate genes have been identified in mammals. FABPs were named after the tissue in which they were discovered or are prominently expressed. This nomenclature can be misleading because several FABPs are expressed in more than one tissue, and a numerical nomenclature for the various FABPs has been introduced (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar). All FABPs exhibit high affinity binding of a single saturated or unsaturated long-chain fatty acid (LCFA; ≥14 carbons), with the exception of liver FABP (LFABP; FABP1), which binds two fatty acids or other hydrophobic molecules. Binding affinities correlate directly with fatty acid hydrophobicity (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 4Richieri G.V. Ogata R.T. Zimmerman A.W. Veerkamp J.H. Kleinfeld A.M. Biochemistry. 2000; 39: 7197-7204Crossref PubMed Scopus (144) Google Scholar). These small proteins (∼15 kDa) show only moderate amino acid sequence homology, ranging from 20 to 70%, yet they have highly similar tertiary structures. All have in common a 10-stranded antiparallel β-barrel structure. The ligand-binding pocket is located inside the β-barrel and is framed on one side by an N-terminal helix-turn-helix motif that is thought to act as the major portal for LCFA entry and exit (Fig. 1) (1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar). fatty acid-binding protein long-chain fatty acid liver FABP triacylglycerol adipocyte FABP keratinocyte FABP hormone-sensitive lipase palmitate oleate peroxisome proliferator-activated receptor endoplasmic reticulum heart FABP phospholipid arachidonic acid polyunsaturated fatty acid docosahexaenoic acid brain FABP retinoic acid intestinal FABP ileal bile acid-binding protein prechylomicron transport vesicle monoacylglycerol. Why are there multiple FABPs, then, when all have a similar fold and all bind LCFA? Other classes of lipid-binding proteins are typically ubiquitously expressed from a single gene. As will be discussed below, recent research has suggested that the FABPs have individual functions in their specific tissues. Although all FABPs are involved in fatty acid disposition, it is likely that the diverse nature of fatty acid function is reflected in the diversity of FABP expression in different tissues. These divergent functions may be driven, in part, by protein-protein and protein-membrane interactions that are tissue specific. This minireview will present hypotheses regarding the functions of FABPs in different tissues, evaluating the evidence obtained from cultured cells, structure-function analyses, and gene knock-out mice. Summary and PerspectiveThe functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well (Table 1). The functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well. Thus, despite similar ligand binding characteristics and highly homologous tertiary structures, each FABP appears to have unique functions in specific tissues. Overall, the FABPs function as intracellular LCFA trafficking proteins between particular subcellular sites. The transport properties of the FABPs are governed in part by specific protein-protein and protein-membrane interactions, and the helix-turn-helix domain of the FABPs is critical although likely not exclusive in specifying these interactions. Several of the FABPs have been shown to deliver their ligands to nuclear transcription factors, thus modulating gene expression in a tissue-specific manner. Cellular changes in gene expression and lipid metabolism brought about by the FABPs lead to changes in whole body energy homeostasis. Given the role of aberrant lipid metabolism in most if not all of the metabolic syndrome disorders, the FABPs may be envisioned as central regulators of lipid disposition at the cell and tissue levels that have a profound impact on systemic energy metabolism.TABLE 1FABP Tissue Distribution and Proposed Functional RolesFABP expressionFunctional rolesPhysiological end pointsRefs.Adipose tissue AFABP (very high levels), KFABP (very low levels)TG storage (interactions with HSL), regulation of fatty acid species abundance, interaction with PPAR nuclear receptors, inflammatory cytokine productionInsulin resistance, metabolic syndrome, inflammatory diseases1Storch J. McDermott L. J. Lipid Res. 2009; 50 (suppl.): S126-S131Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 5Erbay E. Babaev V.R. Mayers J.R. Makowski L. Charles K.N. Snitow M.E. Fazio S. Wiest M.M. Watkins S.M. Linton M.F. Hotamisligil G.S. Nat. Med. 2009; 15: 1383-1391Crossref PubMed Scopus (387) Google Scholar, 6Shaughnessy S. Smith E.R. Kodukula S. Storch J. Fried S.K. Diabetes. 2000; 49: 904-911Crossref PubMed Scopus (84) Google Scholar, 7Coe N.R. Simpson M.A. Bernlohr D.A. J. Lipid Res. 1999; 40: 967-972Abstract Full Text Full Text PDF PubMed Google Scholar, 9Maeda K. Cao H. Kono K. Gorgun C.Z. Furuhashi M. Uysal K.T. Cao Q. Atsumi G. Malone H. Krishnan B. Minokoshi Y. Kahn B.B. Parker R.A. Hotamisligil G.S. Cell Metab. 2005; 1: 107-119Abstract Full Text Full Text PDF PubMed Scopus (377) Google Scholar, 10Smith A.J. Sanders M.A. Juhlmann B.E. Hertzel A.V. Bernlohr D.A. J. Biol. Chem. 2008; 283: 33536-33543Abstract Full Text Full Text PDF PubMed Scopus (33) Google Scholar, 11Cao H. Gerhold K. Mayers J.R. Wiest M.M. Watkins S.M. Hotamisligil G.S. Cell. 2008; 134: 933-944Abstract Full Text Full Text PDF PubMed Scopus (799) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 13Gillilan R.E. Ayers S.D. Noy N. J. Mol. Biol. 2007; 372: 1246-1260Crossref PubMed Scopus (114) Google ScholarMacrophages AFABP and KFABPInflammatory cytokine production, mediation of ER stress response, interaction with PPARγ nuclear receptors, interaction with JAK2 signaling pathwayDiet-induced atherosclerosis, other inflammatory diseases5Erbay E. Babaev V.R. Mayers J.R. Makowski L. Charles K.N. Snitow M.E. Fazio S. Wiest M.M. Watkins S.M. Linton M.F. Hotamisligil G.S. Nat. Med. 2009; 15: 1383-1391Crossref PubMed Scopus (387) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 13Gillilan R.E. Ayers S.D. Noy N. J. Mol. Biol. 2007; 372: 1246-1260Crossref PubMed Scopus (114) Google Scholar, 14Layne M.D. Patel A. Chen Y.H. Rebel V.I. Carvajal I.M. Pellacani A. Ith B. Zhao D. Schreiber B.M. Yet S.F. Lee M.E. Storch J. Perrella M.A. FASEB J. 2001; 15: 2733-2735Crossref PubMed Scopus (55) Google Scholar, 15Hui X. Li H. Zhou Z. Lam K.S. Xiao Y. Wu D. Ding K. Wang Y. Vanhoutte P.M. Xu A. J. Biol. Chem. 2010; 285: 10273-10280Abstract Full Text Full Text PDF PubMed Scopus (123) Google ScholarLiver LFABPLCFA transport linked to β-oxidation, interaction with PPARα nuclear receptorsDevelopment of metabolic syndrome and exacerbation of obesity, reduction of liver cholesterol and bile acid pools2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 39Newberry E.P. Xie Y. Kennedy S.M. Luo J. Davidson N.O. Hepatology. 2006; 44: 1191-1205Crossref PubMed Scopus (172) Google Scholar, 40Erol E. Kumar L.S. Cline G.W. Shulman G.I. Kelly D.P. Binas B. FASEB J. 2004; 18: 347-349Crossref PubMed Google Scholar, 41Newberry E.P. Xie Y. Kennedy S. Han X. Buhman K.K. Luo J. Gross R.W. Davidson N.O. J. Biol. Chem. 2003; 278: 51664-51672Abstract Full Text Full Text PDF PubMed Scopus (226) Google Scholar, 42Atshaves B.P. McIntosh A.L. Storey S.M. Landrock K.K. Kier A.B. Schroeder F. Lipids. 2010; 45: 97-110Crossref PubMed Scopus (38) Google Scholar, 43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 44Hostetler H.A. McIntosh A.L. Atshaves B.P. Storey S.M. Payne H.R. Kier A.B. Schroeder F. J. Lipid Res. 2009; 50: 1663-1675Abstract Full Text Full Text PDF PubMed Scopus (115) Google Scholar, 45Wolfrum C. Cell. Mol. Life Sci. 2007; 64: 2465-2476Crossref PubMed Scopus (36) Google Scholar, 46McIntosh A.L. Atshaves B.P. Hostetler H.A. Huang H. Davis J. Lyuksyutova O.I. Landrock D. Kier A.B. Schroeder F. Arch. Biochem. Biophys. 2009; 485: 160-173Crossref PubMed Scopus (44) Google ScholarIntestine IFABPLCFA partitioning toward TG synthesisProtection against obesity, hypertriglyceridemia, liver TG accumulation, and metabolic syndrome8Storch J. Corsico B. Annu. Rev. Nutr. 2008; 28: 73-95Crossref PubMed Scopus (310) Google Scholar, 43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 47Vassileva G. Huwyler L. Poirier K. Agellon L.B. Toth M.J. FASEB J. 2000; 14: 2040-2046Crossref PubMed Scopus (145) Google Scholar, 48Agellon L.B. Drozdowski L. Li L. Iordache C. Luong L. Clandinin M.T. Uwiera R.R. Toth M.J. Thomson A.B. Biochim. Biophys. Acta. 2007; 1771: 1283-1288Crossref PubMed Scopus (25) Google Scholar, 52Lagakos W. Storch J. Zhou Y.X. Russnak T. Agellon L. FASEB J. 2009; 23: 521Crossref Google Scholar, 53Levy E. Ménard D. Delvin E. Montoudis A. Beaulieu J.F. Mailhot G. Dubé N. Sinnett D. Seidman E. Bendayan M. Histochem. Cell Biol. 2009; 132: 351-367Crossref PubMed Scopus (57) Google Scholar, 54Montoudis A. Seidman E. Boudreau F. Beaulieu J.F. Menard D. Elchebly M. Mailhot G. Sane A.T. Lambert M. Delvin E. Levy E. J. Lipid Res. 2008; 49: 961-972Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar, 55Baier L.J. Sacchettini J.C. Knowler W.C. Eads J. Paolisso G. Tataranni P.A. Mochizuki H. Bennett P.H. Bogardus C. Prochazka M. Bennett P.H. J. Clin. Invest. 1995; 95: 1281-1287Crossref PubMed Scopus (335) Google Scholar ILBPBile acid transport47Vassileva G. Huwyler L. Poirier K. Agellon L.B. Toth M.J. FASEB J. 2000; 14: 2040-2046Crossref PubMed Scopus (145) Google Scholar, 48Agellon L.B. Drozdowski L. Li L. Iordache C. Luong L. Clandinin M.T. Uwiera R.R. Toth M.J. Thomson A.B. Biochim. Biophys. Acta. 2007; 1771: 1283-1288Crossref PubMed Scopus (25) Google Scholar LFABPLCFA transport linked to β-oxidation. MG incorporation into PLs, part of PCTV membrane budding complexChylomicron biogenesis43Xie Y. Newberry E.P. Kennedy S.M. Luo J. Davidson N.O. J. Lipid Res. 2009; 50: 977-987Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 49Neeli I. Siddiqi S.A. Siddiqi S. Mahan J. Lagakos W.S. Binas B. Gheyi T. Storch J. Mansbach 2nd, C.M. J. Biol. Chem. 2007; 282: 17974-17984Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar, 50Siddiqi S. Saleem U. Abumrad N.A. Davidson N.O. Storch J. Siddiqi S.A. Mansbach 2nd, C.M. J. Lipid Res. 2010; 51: 1918-1928Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 51Lagakos W.S. Storch J. Zhou Y.X. Mandap B. Binas B. FASEB J. 2007; 21: LB35Crossref Google ScholarBrain Central nervous systemaExpression of FABPs in the central nervous system shows spatiotemporal distribution patterns, as described in the text.BFABPNeural utilization of DHA in membrane synthesis and signalingProliferation of neural progenitor cells and midterm stages of embryonic development; initial differentiation of neural cells; linked to schizophrenia, bipolar disorder, Down syndrome, and emotional behavior3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 24Chalon S. Prostaglandins Leukot. Essent. Fatty Acids. 2006; 75: 259-269Abstract Full Text Full Text PDF PubMed Scopus (340) Google Scholar, 25Cheon M.S. Kim S.H. Fountoulakis M. Lubec G. J. Neural Transm. Suppl. 2003; 67: 225-234Crossref Scopus (46) Google Scholar, 28Boneva N.B. Kaplamadzhiev D.B. Sahara S. Kikuchi H. Pyko I.V. Kikuchi M. Tonchev A.B. Yamashima T. Hippocampus. 2010; (in press)Google Scholar, 29Hanhoff T. Lücke C. Spener F. Mol. Cell. Biochem. 2002; 239: 45-54Crossref PubMed Scopus (164) Google Scholar, 30Xu L.Z. Sánchez R. Sali A. Heintz N. J. Biol. Chem. 1996; 271: 24711-24719Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar, 31Balendiran G.K. Schnutgen F. Scapin G. Borchers T. Xhong N. Lim K. Godbout R. Spener F. Sacchettini J.C. J. Biol. Chem. 2000; 275: 27045-27054Abstract Full Text Full Text PDF PubMed Google ScholarHFABPIncorporation of AA into brain PLs, maintenance of ω6/ω3-PUFA balanceMaintenance of differentiation status of adult brain, linked to Down syndrome, Alzheimer disease, and neurological function3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 22Myers-Payne S.C. Hubbell T. Pu L. Schnütgen F. Börchers T. Wood W.G. Spener F. Schroeder F. J. Neurochem. 1996; 66: 1648-1656Crossref PubMed Scopus (56) Google Scholar, 23Murphy E.J. Owada Y. Kitanaka N. Kondo H. Glatz J.F. Biochemistry. 2005; 44: 6350-6360Crossref PubMed Scopus (76) Google Scholar, 25Cheon M.S. Kim S.H. Fountoulakis M. Lubec G. J. Neural Transm. Suppl. 2003; 67: 225-234Crossref Scopus (46) Google Scholar, 26Watanabe A. Toyota T. Owada Y. Hayashi T. Iwayama Y. Matsumata M. Ishitsuka Y. Nakaya A. Maekawa M. Ohnishi T. Arai R. Sakurai K. Yamada K. Kondo H. Hashimoto K. Osumi N. Yoshikawa T. PLoS Biol. 2007; 5: e297Crossref PubMed Scopus (151) Google Scholar, 27Sánchez-Font M.F. Bosch-Comas A. Gonzàlez-Duarte R. Marfany G. Nucleic Acids Res. 2003; 31: 2769-2777Crossref PubMed Scopus (31) Google ScholarKFABPLCFA supply and membrane biogenesis, interaction with nuclear receptors (e.g. PPARβ/δ), utilization of RANeurite outgrowth and axon development, differentiation of neural cells, up-regulated under pathological conditions (e.g. nerve injury)3Owada Y. Tohoku J. Exp. Med. 2008; 214: 213-220Crossref PubMed Scopus (85) Google Scholar, 28Boneva N.B. Kaplamadzhiev D.B. Sahara S. Kikuchi H. Pyko I.V. Kikuchi M. Tonchev A.B. Yamashima T. Hippocampus. 2010; (in press)Google Scholar, 33De León M. Welcher A.A. Nahin R.H. Liu Y. Ruda M.A. Shooter E.M. Molina C.A. J. Neurosci. Res. 1996; 44: 283-292Crossref PubMed Scopus (0) Google Scholar, 34Liu J.W. Almaguel F.G. Bu L. De Leon D.D. De Leon M. J. Neurochem. 2008; 106: 2015-2029PubMed Google Scholar, 36Schug T.T. Berry D.C. Shaw N.S. Travis S.N. Noy N. Cell. 2007; 129: 723-733Abstract Full Text Full Text PDF PubMed Scopus (509) Google Scholar Peripheral nervous systemMFABPLCFA supply and membrane biogenesisDevelopment of myelin sheath21Trapp B.D. Dubois-Dalcq M. Quarles R.H. J. Neurochem. 1984; 43: 944-948Crossref PubMed Scopus (57) Google Scholar, 37Kursula P. Amino Acids. 2008; 34: 175-185Crossref PubMed Scopus (55) Google ScholarMuscle tissue CardiacHFABPLCFA transport linked to β-oxidation, trafficking of LCFA to specific PL pools, interaction with nuclear receptors (e.g. PPARα)Cardiomyocyte differentiation and inhibition of cardiomyocyte proliferation, lipid fuel utilization2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 16Tang M.K. Kindler P.M. Cai D.Q. Chow P.H. Li M. Lee K.K. Cell Tissue Res. 2004; 316: 339-347Crossref PubMed Scopus (27) Google Scholar, 17Schaap F.G. Binas B. Danneberg H. van der Vusse G.J. Glatz J.F. Circ. Res. 1999; 85: 329-337Crossref PubMed Scopus (163) Google Scholar, 18Binas B. Danneberg H. McWhir J. Mullins L. Clark A.J. FASEB J. 1999; 13: 805-812Crossref PubMed Scopus (237) Google Scholar SkeletalHFABPLCFA transport linked to β-oxidation and esterification, interaction with nuclear receptors (e.g. PPARα)Skeletal muscle differentiation2Binas B. Erol E. Mol. Cell. Biochem. 2007; 299: 75-84Crossref PubMed Scopus (35) Google Scholar, 12Tan N.S. Shaw N.S. Vinckenbosch N. Liu P. Yasmin R. Desvergne B. Wahli W. Noy N. Mol. Cell. Biol. 2002; 22: 5114-5127Crossref PubMed Scopus (394) Google Scholar, 19Erol E. Cline G.W. Kim J.K. Taegtmeyer H. Binas B. Am. J. Physiol. Endocrinol. Metab. 2004; 287: E977-E982Crossref PubMed Scopus (17) Google Scholara Expression of FABPs in the central nervous system shows spatiotemporal distribution patterns, as described in the text. Open table in a new tab The functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well (Table 1). The functions of fatty acids and other lipids are often highly tissue-specific, and it is becoming clear that the FABPs function in a tissue-specific manner as well. Thus, despite similar ligand binding characteristics and highly homologous tertiary structures, each FABP appears to have unique functions in specific tissues. Overall, the FABPs function as intracellular LCFA trafficking proteins between particular subcellular sites. The transport properties of the FABPs are governed in part by specific protein-protein and protein-membrane interactions, and the helix-turn-helix domain of the FABPs is critical although likely not exclusive in specifying these interactions. Several of the FABPs have been shown to deliver their ligands to nuclear transcription factors, thus modulating gene expression in a tissue-specific manner. Cellular changes in gene expression and lipid metabolism brought about by the FABPs lead to changes in whole body energy homeostasis. Given the role of aberrant lipid metabolism in most if not all of the metabolic syndrome disorders, the FABPs may be envisioned as central regulators of lipid disposition at the cell and tissue levels that have a profound impact on systemic energy metabolism." @default.
- W2073463418 created "2016-06-24" @default.
- W2073463418 creator A5044773512 @default.
- W2073463418 creator A5073706195 @default.
- W2073463418 date "2010-10-01" @default.
- W2073463418 modified "2023-10-06" @default.
- W2073463418 title "Tissue-specific Functions in the Fatty Acid-binding Protein Family" @default.
- W2073463418 cites W1570241539 @default.
- W2073463418 cites W1604376892 @default.
- W2073463418 cites W1964373657 @default.
- W2073463418 cites W1976829208 @default.
- W2073463418 cites W1978486320 @default.
- W2073463418 cites W1983068024 @default.
- W2073463418 cites W1983289061 @default.
- W2073463418 cites W1992005503 @default.
- W2073463418 cites W1996512794 @default.
- W2073463418 cites W1998335045 @default.
- W2073463418 cites W2003505233 @default.
- W2073463418 cites W2007106585 @default.
- W2073463418 cites W2007999164 @default.
- W2073463418 cites W2018883062 @default.
- W2073463418 cites W2021706548 @default.
- W2073463418 cites W2021900382 @default.
- W2073463418 cites W2022379804 @default.
- W2073463418 cites W2027926046 @default.
- W2073463418 cites W2034937725 @default.
- W2073463418 cites W2040358658 @default.
- W2073463418 cites W2044229269 @default.
- W2073463418 cites W2047444442 @default.
- W2073463418 cites W2048024814 @default.
- W2073463418 cites W2052378749 @default.
- W2073463418 cites W2053307994 @default.
- W2073463418 cites W2053762737 @default.
- W2073463418 cites W2062533493 @default.
- W2073463418 cites W2068210500 @default.
- W2073463418 cites W2068212327 @default.
- W2073463418 cites W2071274012 @default.
- W2073463418 cites W2071997319 @default.
- W2073463418 cites W2072475554 @default.
- W2073463418 cites W2087260851 @default.
- W2073463418 cites W2093995222 @default.
- W2073463418 cites W2095555940 @default.
- W2073463418 cites W2096326095 @default.
- W2073463418 cites W2098534934 @default.
- W2073463418 cites W2100423128 @default.
- W2073463418 cites W2105326969 @default.
- W2073463418 cites W2107037828 @default.
- W2073463418 cites W2108036042 @default.
- W2073463418 cites W2118800801 @default.
- W2073463418 cites W2118955611 @default.
- W2073463418 cites W2132408300 @default.
- W2073463418 cites W2139297590 @default.
- W2073463418 cites W2140096680 @default.
- W2073463418 cites W2147073885 @default.
- W2073463418 cites W2151091815 @default.
- W2073463418 cites W2154584898 @default.
- W2073463418 cites W2164721789 @default.
- W2073463418 cites W2166077943 @default.
- W2073463418 cites W2282856080 @default.
- W2073463418 cites W315138613 @default.
- W2073463418 cites W4240449260 @default.
- W2073463418 cites W80208836 @default.
- W2073463418 doi "https://doi.org/10.1074/jbc.r110.135210" @default.
- W2073463418 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2963392" @default.
- W2073463418 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20716527" @default.
- W2073463418 hasPublicationYear "2010" @default.
- W2073463418 type Work @default.
- W2073463418 sameAs 2073463418 @default.
- W2073463418 citedByCount "267" @default.
- W2073463418 countsByYear W20734634182012 @default.
- W2073463418 countsByYear W20734634182013 @default.
- W2073463418 countsByYear W20734634182014 @default.
- W2073463418 countsByYear W20734634182015 @default.
- W2073463418 countsByYear W20734634182016 @default.
- W2073463418 countsByYear W20734634182017 @default.
- W2073463418 countsByYear W20734634182018 @default.
- W2073463418 countsByYear W20734634182019 @default.
- W2073463418 countsByYear W20734634182020 @default.
- W2073463418 countsByYear W20734634182021 @default.
- W2073463418 countsByYear W20734634182022 @default.
- W2073463418 countsByYear W20734634182023 @default.
- W2073463418 crossrefType "journal-article" @default.
- W2073463418 hasAuthorship W2073463418A5044773512 @default.
- W2073463418 hasAuthorship W2073463418A5073706195 @default.
- W2073463418 hasBestOaLocation W20734634181 @default.
- W2073463418 hasConcept C104317684 @default.
- W2073463418 hasConcept C185592680 @default.
- W2073463418 hasConcept C2776834966 @default.
- W2073463418 hasConcept C51639874 @default.
- W2073463418 hasConcept C543025807 @default.
- W2073463418 hasConcept C55493867 @default.
- W2073463418 hasConceptScore W2073463418C104317684 @default.
- W2073463418 hasConceptScore W2073463418C185592680 @default.
- W2073463418 hasConceptScore W2073463418C2776834966 @default.
- W2073463418 hasConceptScore W2073463418C51639874 @default.
- W2073463418 hasConceptScore W2073463418C543025807 @default.
- W2073463418 hasConceptScore W2073463418C55493867 @default.
- W2073463418 hasIssue "43" @default.