Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073522055> ?p ?o ?g. }
- W2073522055 endingPage "1179" @default.
- W2073522055 startingPage "1169" @default.
- W2073522055 abstract "The previously known works studying the generalization ability of support vector machine classification (SVMC) algorithm are usually based on the assumption of independent and identically distributed samples. In this paper, we go far beyond this classical framework by studying the generalization ability of SVMC based on uniformly ergodic Markov chain (u.e.M.c.) samples. We analyze the excess misclassification error of SVMC based on u.e.M.c. samples, and obtain the optimal learning rate of SVMC for u.e.M.c. samples. We also introduce a new Markov sampling algorithm for SVMC to generate u.e.M.c. samples from given dataset, and present the numerical studies on the learning performance of SVMC based on Markov sampling for benchmark datasets. The numerical studies show that the SVMC based on Markov sampling not only has better generalization ability as the number of training samples are bigger, but also the classifiers based on Markov sampling are sparsity when the size of dataset is bigger with regard to the input dimension." @default.
- W2073522055 created "2016-06-24" @default.
- W2073522055 creator A5015525872 @default.
- W2073522055 creator A5015745132 @default.
- W2073522055 creator A5070570029 @default.
- W2073522055 creator A5075938156 @default.
- W2073522055 creator A5078058840 @default.
- W2073522055 creator A5078602884 @default.
- W2073522055 creator A5085140523 @default.
- W2073522055 date "2015-06-01" @default.
- W2073522055 modified "2023-10-16" @default.
- W2073522055 title "The Generalization Ability of SVM Classification Based on Markov Sampling" @default.
- W2073522055 cites W1827175191 @default.
- W2073522055 cites W1972615020 @default.
- W2073522055 cites W1982453328 @default.
- W2073522055 cites W1986280275 @default.
- W2073522055 cites W1995713768 @default.
- W2073522055 cites W1996700041 @default.
- W2073522055 cites W2003585400 @default.
- W2073522055 cites W2010353172 @default.
- W2073522055 cites W2017332415 @default.
- W2073522055 cites W2020999234 @default.
- W2073522055 cites W2021440127 @default.
- W2073522055 cites W2023163512 @default.
- W2073522055 cites W2044873069 @default.
- W2073522055 cites W2047278710 @default.
- W2073522055 cites W2055608878 @default.
- W2073522055 cites W2058402854 @default.
- W2073522055 cites W2061626571 @default.
- W2073522055 cites W2075672181 @default.
- W2073522055 cites W2078432849 @default.
- W2073522055 cites W2081621367 @default.
- W2073522055 cites W2086236043 @default.
- W2073522055 cites W2099579348 @default.
- W2073522055 cites W2109445534 @default.
- W2073522055 cites W2110652811 @default.
- W2073522055 cites W2112531253 @default.
- W2073522055 cites W2142563104 @default.
- W2073522055 cites W2149614431 @default.
- W2073522055 cites W2163463863 @default.
- W2073522055 cites W2479575276 @default.
- W2073522055 cites W4302422232 @default.
- W2073522055 doi "https://doi.org/10.1109/tcyb.2014.2346536" @default.
- W2073522055 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25163077" @default.
- W2073522055 hasPublicationYear "2015" @default.
- W2073522055 type Work @default.
- W2073522055 sameAs 2073522055 @default.
- W2073522055 citedByCount "37" @default.
- W2073522055 countsByYear W20735220552015 @default.
- W2073522055 countsByYear W20735220552016 @default.
- W2073522055 countsByYear W20735220552017 @default.
- W2073522055 countsByYear W20735220552018 @default.
- W2073522055 countsByYear W20735220552019 @default.
- W2073522055 countsByYear W20735220552020 @default.
- W2073522055 countsByYear W20735220552021 @default.
- W2073522055 countsByYear W20735220552022 @default.
- W2073522055 countsByYear W20735220552023 @default.
- W2073522055 crossrefType "journal-article" @default.
- W2073522055 hasAuthorship W2073522055A5015525872 @default.
- W2073522055 hasAuthorship W2073522055A5015745132 @default.
- W2073522055 hasAuthorship W2073522055A5070570029 @default.
- W2073522055 hasAuthorship W2073522055A5075938156 @default.
- W2073522055 hasAuthorship W2073522055A5078058840 @default.
- W2073522055 hasAuthorship W2073522055A5078602884 @default.
- W2073522055 hasAuthorship W2073522055A5085140523 @default.
- W2073522055 hasConcept C106131492 @default.
- W2073522055 hasConcept C11413529 @default.
- W2073522055 hasConcept C114614502 @default.
- W2073522055 hasConcept C117765406 @default.
- W2073522055 hasConcept C119322782 @default.
- W2073522055 hasConcept C119857082 @default.
- W2073522055 hasConcept C122044880 @default.
- W2073522055 hasConcept C12267149 @default.
- W2073522055 hasConcept C13280743 @default.
- W2073522055 hasConcept C134306372 @default.
- W2073522055 hasConcept C140779682 @default.
- W2073522055 hasConcept C153180895 @default.
- W2073522055 hasConcept C154945302 @default.
- W2073522055 hasConcept C177148314 @default.
- W2073522055 hasConcept C185798385 @default.
- W2073522055 hasConcept C205649164 @default.
- W2073522055 hasConcept C31972630 @default.
- W2073522055 hasConcept C33676613 @default.
- W2073522055 hasConcept C33923547 @default.
- W2073522055 hasConcept C41008148 @default.
- W2073522055 hasConcept C50644808 @default.
- W2073522055 hasConcept C98763669 @default.
- W2073522055 hasConceptScore W2073522055C106131492 @default.
- W2073522055 hasConceptScore W2073522055C11413529 @default.
- W2073522055 hasConceptScore W2073522055C114614502 @default.
- W2073522055 hasConceptScore W2073522055C117765406 @default.
- W2073522055 hasConceptScore W2073522055C119322782 @default.
- W2073522055 hasConceptScore W2073522055C119857082 @default.
- W2073522055 hasConceptScore W2073522055C122044880 @default.
- W2073522055 hasConceptScore W2073522055C12267149 @default.
- W2073522055 hasConceptScore W2073522055C13280743 @default.
- W2073522055 hasConceptScore W2073522055C134306372 @default.
- W2073522055 hasConceptScore W2073522055C140779682 @default.