Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073614448> ?p ?o ?g. }
- W2073614448 endingPage "37" @default.
- W2073614448 startingPage "28" @default.
- W2073614448 abstract "Over the past several years there have been dramatic advances toward the realization of electronic computers integrated on the molecular scale. First, individual molecules were demonstrated that serve as incomprehensibly tiny switches and wires one million times smaller than those on conventional silicon microchips1, 2, 3, 4. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular-scale devices4, 5, 6, 7, 8, 9, 10. A major force responsible for these revolutionary developments has been the molecular electronics or ‘Moletronics’ Program organized by the US Government's Defense Advanced Research Projects Agency (DARPA). Previously, DARPA gave birth to the Internet in the 1970s and 1980s, revolutionizing the way the world communicates. Now, the agency is setting its sights on a new revolution in the nature, structure, and scale of the very materials with which the world both computes and builds. Ultimately, to compute with molecular-scale structures — i.e. nanometer-scale structures — one must learn how to characterize and organize them on similar scales, one by one and in vast arrays. This is creating a whole new science and industry of ‘nanostructured materials’, such as are portrayed in Fig. 1Download : Download high-res image (14KB)Download : Download full-size imageFig. 1. Moletronics nanostructured materials. (a) Electron micrograph of self-assembled ErSi2 nanowires developed at HP. (Reproduced with permission from54.); (b) electron micrograph of cowpea viral particle modified with gold nanoclusters developed at NRL to use as a template for molecular self-assembly; (c) simulation of Rice University's gold-nanoparticle electrical contacts on a surface in a ‘NanoCell’ molecular logic structure51; (d) structural diagram of NDR diode switch molecule20, 28, 35 and a simulation of its molecular orbitals involved in switching. (Reproduced with permision from47. Copyright 2000 American Chemical Society.); (e) gold nanobars synthesized at PSU; (f) electron micrograph of nanowire transistor-based logic circuit4 that was self-assembled and demonstrated at Harvard University.(Reprinted with permission from5. Copyright 2001 American Association for the Advancement of Science.). Fig. 1. Moletronics nanostructured materials. (a) Electron micrograph of self-assembled ErSi2 nanowires developed at HP. (Reproduced with permission from54.); (b) electron micrograph of cowpea viral particle modified with gold nanoclusters developed at NRL to use as a template for molecular self-assembly; (c) simulation of Rice University's gold-nanoparticle electrical contacts on a surface in a ‘NanoCell’ molecular logic structure51; (d) structural diagram of NDR diode switch molecule20, 28, 35 and a simulation of its molecular orbitals involved in switching. (Reproduced with permision from47. Copyright 2000 American Chemical Society.); (e) gold nanobars synthesized at PSU; (f) electron micrograph of nanowire transistor-based logic circuit4 that was self-assembled and demonstrated at Harvard University.(Reprinted with permission from5. Copyright 2001 American Association for the Advancement of Science.)" @default.
- W2073614448 created "2016-06-24" @default.
- W2073614448 creator A5066314838 @default.
- W2073614448 creator A5000123142 @default.
- W2073614448 date "2002-02-01" @default.
- W2073614448 modified "2023-10-09" @default.
- W2073614448 title "Moletronics: future electronics" @default.
- W2073614448 cites W1487069997 @default.
- W2073614448 cites W1500049300 @default.
- W2073614448 cites W1564726365 @default.
- W2073614448 cites W1586668292 @default.
- W2073614448 cites W1646294624 @default.
- W2073614448 cites W1965020427 @default.
- W2073614448 cites W1969293354 @default.
- W2073614448 cites W1973391574 @default.
- W2073614448 cites W1979077619 @default.
- W2073614448 cites W1980374305 @default.
- W2073614448 cites W1983979420 @default.
- W2073614448 cites W1985555064 @default.
- W2073614448 cites W1986881964 @default.
- W2073614448 cites W1987416224 @default.
- W2073614448 cites W1988992912 @default.
- W2073614448 cites W1990498470 @default.
- W2073614448 cites W1992635254 @default.
- W2073614448 cites W1993896794 @default.
- W2073614448 cites W1997525482 @default.
- W2073614448 cites W1998868256 @default.
- W2073614448 cites W1999420559 @default.
- W2073614448 cites W2007795646 @default.
- W2073614448 cites W2008399142 @default.
- W2073614448 cites W2008803333 @default.
- W2073614448 cites W2015694023 @default.
- W2073614448 cites W2015856124 @default.
- W2073614448 cites W2017098806 @default.
- W2073614448 cites W2019219628 @default.
- W2073614448 cites W2021234842 @default.
- W2073614448 cites W2022150513 @default.
- W2073614448 cites W2022829874 @default.
- W2073614448 cites W2024360896 @default.
- W2073614448 cites W2030496130 @default.
- W2073614448 cites W2033098178 @default.
- W2073614448 cites W2035577388 @default.
- W2073614448 cites W2038981495 @default.
- W2073614448 cites W2040709886 @default.
- W2073614448 cites W2045725637 @default.
- W2073614448 cites W2046049339 @default.
- W2073614448 cites W2047568832 @default.
- W2073614448 cites W2049650033 @default.
- W2073614448 cites W2050686463 @default.
- W2073614448 cites W2054412489 @default.
- W2073614448 cites W2057657915 @default.
- W2073614448 cites W2063219977 @default.
- W2073614448 cites W2068865815 @default.
- W2073614448 cites W2069623411 @default.
- W2073614448 cites W2078907060 @default.
- W2073614448 cites W2090673131 @default.
- W2073614448 cites W2091166549 @default.
- W2073614448 cites W2091319487 @default.
- W2073614448 cites W2096168689 @default.
- W2073614448 cites W2106057522 @default.
- W2073614448 cites W2109658437 @default.
- W2073614448 cites W2110408336 @default.
- W2073614448 cites W2112215441 @default.
- W2073614448 cites W2112969083 @default.
- W2073614448 cites W2119416693 @default.
- W2073614448 cites W2120149280 @default.
- W2073614448 cites W2133899617 @default.
- W2073614448 cites W2144087168 @default.
- W2073614448 cites W2160210493 @default.
- W2073614448 cites W2164913436 @default.
- W2073614448 cites W2168569492 @default.
- W2073614448 cites W2171057852 @default.
- W2073614448 cites W2334570868 @default.
- W2073614448 cites W4236707110 @default.
- W2073614448 cites W4254640185 @default.
- W2073614448 doi "https://doi.org/10.1016/s1369-7021(02)05227-6" @default.
- W2073614448 hasPublicationYear "2002" @default.
- W2073614448 type Work @default.
- W2073614448 sameAs 2073614448 @default.
- W2073614448 citedByCount "124" @default.
- W2073614448 countsByYear W20736144482012 @default.
- W2073614448 countsByYear W20736144482013 @default.
- W2073614448 countsByYear W20736144482014 @default.
- W2073614448 countsByYear W20736144482016 @default.
- W2073614448 countsByYear W20736144482018 @default.
- W2073614448 countsByYear W20736144482020 @default.
- W2073614448 countsByYear W20736144482021 @default.
- W2073614448 countsByYear W20736144482022 @default.
- W2073614448 crossrefType "journal-article" @default.
- W2073614448 hasAuthorship W2073614448A5000123142 @default.
- W2073614448 hasAuthorship W2073614448A5066314838 @default.
- W2073614448 hasBestOaLocation W20736144481 @default.
- W2073614448 hasConcept C119599485 @default.
- W2073614448 hasConcept C121332964 @default.
- W2073614448 hasConcept C123057669 @default.
- W2073614448 hasConcept C127413603 @default.
- W2073614448 hasConcept C138331895 @default.
- W2073614448 hasConcept C171250308 @default.