Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073627497> ?p ?o ?g. }
- W2073627497 endingPage "307" @default.
- W2073627497 startingPage "295" @default.
- W2073627497 abstract "Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections. Therefore, characteristics of mixing networks—and how these deviate from the random-mixing norm—have become important applied concerns that may enhance the understanding and prediction of epidemic patterns and intervention measures. Here, we review the basis of epidemiological theory (based on random-mixing models) and network theory (based on work from the social sciences and graph theory). We then describe a variety of methods that allow the mixing network, or an approximation to the network, to be ascertained. It is often the case that time and resources limit our ability to accurately find all connections within a network, and hence a generic understanding of the relationship between network structure and disease dynamics is needed. Therefore, we review some of the variety of idealized network types and approximation techniques that have been utilized to elucidate this link. Finally, we look to the future to suggest how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control." @default.
- W2073627497 created "2016-06-24" @default.
- W2073627497 creator A5059675391 @default.
- W2073627497 creator A5086651355 @default.
- W2073627497 date "2005-06-20" @default.
- W2073627497 modified "2023-10-16" @default.
- W2073627497 title "Networks and epidemic models" @default.
- W2073627497 cites W127743642 @default.
- W2073627497 cites W1965499304 @default.
- W2073627497 cites W1965774551 @default.
- W2073627497 cites W1966894621 @default.
- W2073627497 cites W1969723574 @default.
- W2073627497 cites W1970190174 @default.
- W2073627497 cites W1974900022 @default.
- W2073627497 cites W1976097154 @default.
- W2073627497 cites W1980099211 @default.
- W2073627497 cites W1988519719 @default.
- W2073627497 cites W1991782220 @default.
- W2073627497 cites W1996209943 @default.
- W2073627497 cites W2001295760 @default.
- W2073627497 cites W2002119345 @default.
- W2073627497 cites W2007756405 @default.
- W2073627497 cites W2008529267 @default.
- W2073627497 cites W2008620264 @default.
- W2073627497 cites W2012620166 @default.
- W2073627497 cites W2013658773 @default.
- W2073627497 cites W2015808335 @default.
- W2073627497 cites W2019921596 @default.
- W2073627497 cites W2020113255 @default.
- W2073627497 cites W2022821112 @default.
- W2073627497 cites W2026609204 @default.
- W2073627497 cites W2029758788 @default.
- W2073627497 cites W2030539428 @default.
- W2073627497 cites W2030540141 @default.
- W2073627497 cites W2032332507 @default.
- W2073627497 cites W2032735736 @default.
- W2073627497 cites W2034051093 @default.
- W2073627497 cites W2035756323 @default.
- W2073627497 cites W2036120033 @default.
- W2073627497 cites W2036735199 @default.
- W2073627497 cites W2038195874 @default.
- W2073627497 cites W2041935797 @default.
- W2073627497 cites W2042299084 @default.
- W2073627497 cites W2044419048 @default.
- W2073627497 cites W2045439060 @default.
- W2073627497 cites W2047478566 @default.
- W2073627497 cites W2051314659 @default.
- W2073627497 cites W2053929841 @default.
- W2073627497 cites W2054043737 @default.
- W2073627497 cites W2060935923 @default.
- W2073627497 cites W2072457880 @default.
- W2073627497 cites W2076851739 @default.
- W2073627497 cites W2078259918 @default.
- W2073627497 cites W2078787094 @default.
- W2073627497 cites W2078980460 @default.
- W2073627497 cites W2092209322 @default.
- W2073627497 cites W2093616570 @default.
- W2073627497 cites W2094742805 @default.
- W2073627497 cites W2096145431 @default.
- W2073627497 cites W2096334666 @default.
- W2073627497 cites W2099810380 @default.
- W2073627497 cites W2104725117 @default.
- W2073627497 cites W2109602569 @default.
- W2073627497 cites W2110633849 @default.
- W2073627497 cites W2110651557 @default.
- W2073627497 cites W2110919848 @default.
- W2073627497 cites W2112090702 @default.
- W2073627497 cites W2125315567 @default.
- W2073627497 cites W2128896743 @default.
- W2073627497 cites W2135641060 @default.
- W2073627497 cites W2139656371 @default.
- W2073627497 cites W2140763962 @default.
- W2073627497 cites W2141206236 @default.
- W2073627497 cites W2147427313 @default.
- W2073627497 cites W2148301044 @default.
- W2073627497 cites W2150053999 @default.
- W2073627497 cites W2151297339 @default.
- W2073627497 cites W2156158169 @default.
- W2073627497 cites W2156589521 @default.
- W2073627497 cites W2170131286 @default.
- W2073627497 cites W2170989160 @default.
- W2073627497 cites W2769133055 @default.
- W2073627497 cites W2795857897 @default.
- W2073627497 cites W2797557610 @default.
- W2073627497 cites W3103071483 @default.
- W2073627497 cites W3103786587 @default.
- W2073627497 cites W3122602071 @default.
- W2073627497 cites W4210731599 @default.
- W2073627497 cites W4213214460 @default.
- W2073627497 cites W4234057457 @default.
- W2073627497 cites W4249214109 @default.
- W2073627497 cites W4252929054 @default.
- W2073627497 cites W4254962106 @default.
- W2073627497 cites W950821216 @default.
- W2073627497 doi "https://doi.org/10.1098/rsif.2005.0051" @default.
- W2073627497 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1578276" @default.
- W2073627497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16849187" @default.
- W2073627497 hasPublicationYear "2005" @default.