Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073650841> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2073650841 endingPage "72" @default.
- W2073650841 startingPage "58" @default.
- W2073650841 abstract "Abstract In this paper, we study the equilibrium states of a compressible hyperelastic layer under compression after the primary and secondary bifurcations. Starting from the two-dimensional field equations for a compressible hyperelastic material, we use a methodology of coupled series-asymptotic expansions developed earlier to derive two coupled non-linear ordinary differential equations (ODEs) as the model equations. The critical buckling stresses are determined by a linear bifurcation analysis, which are in agreement with the results in the literature. The method of multiple scales is used to solve the model equations to obtain the second-order asymptotic solutions after the primary bifurcations. An analytical formula for the post-buckling amplitudes is derived. Two kinds of numerical solutions are also obtained, the numerical solutions of the model equations by a difference method and those of the two-dimensional field equations by the finite elements method. Comparisons among the analytical solutions, numerical solutions and solutions obtained by the Lyapunov–Schmidt–Koiter (LSK) method in the literature are made and good agreements for the displacements are found. It is also found that at some places the axial strain is tensile, although the layer is under compression. To consider the secondary bifurcation, we superimpose a small deformation on the state after the primary bifurcation. With the analytical solution of the primary bifurcation, we manage to reduce the problem of the secondary bifurcation to one of the first bifurcations governed by a second order variable-coefficient ODE. And, our analysis identifies an explicit function and from the existence/non-existence of its zero one can immediately judge whether a secondary bifurcation can take place or not. The zero corresponds to a turning point of the governing ODE, which leads to non-trivial solutions. Further, by the WKB method the equation (in a very simple form) for determining the critical stress for the secondary bifurcation is derived. We further use AUTO to compute the secondary bifurcation point numerically, which confirms the validity of our analytical results. The numerical solution in the secondary bifurcation branch is also computed by AUTO. It is found that the secondary bifurcation induces a “wave number doubling” phenomenon and also the shape of the layer has a convexity change along the axial direction." @default.
- W2073650841 created "2016-06-24" @default.
- W2073650841 creator A5011747260 @default.
- W2073650841 creator A5026903824 @default.
- W2073650841 creator A5043975778 @default.
- W2073650841 date "2013-06-01" @default.
- W2073650841 modified "2023-10-16" @default.
- W2073650841 title "Primary and secondary bifurcations of a compressible hyperelastic layer: Asymptotic model equations and solutions" @default.
- W2073650841 cites W1972939226 @default.
- W2073650841 cites W1979509898 @default.
- W2073650841 cites W1979744304 @default.
- W2073650841 cites W1986695887 @default.
- W2073650841 cites W1990654966 @default.
- W2073650841 cites W1996003856 @default.
- W2073650841 cites W1997294733 @default.
- W2073650841 cites W2004916640 @default.
- W2073650841 cites W2005506380 @default.
- W2073650841 cites W2012695701 @default.
- W2073650841 cites W2021427581 @default.
- W2073650841 cites W2037688635 @default.
- W2073650841 cites W2040101617 @default.
- W2073650841 cites W2069713792 @default.
- W2073650841 cites W2073563590 @default.
- W2073650841 cites W2074406099 @default.
- W2073650841 cites W2086950558 @default.
- W2073650841 cites W2110120048 @default.
- W2073650841 cites W2114210129 @default.
- W2073650841 cites W2466618005 @default.
- W2073650841 cites W2467299092 @default.
- W2073650841 cites W4232497877 @default.
- W2073650841 cites W2140251314 @default.
- W2073650841 doi "https://doi.org/10.1016/j.ijnonlinmec.2013.01.019" @default.
- W2073650841 hasPublicationYear "2013" @default.
- W2073650841 type Work @default.
- W2073650841 sameAs 2073650841 @default.
- W2073650841 citedByCount "17" @default.
- W2073650841 countsByYear W20736508412014 @default.
- W2073650841 countsByYear W20736508412016 @default.
- W2073650841 countsByYear W20736508412017 @default.
- W2073650841 countsByYear W20736508412019 @default.
- W2073650841 countsByYear W20736508412020 @default.
- W2073650841 countsByYear W20736508412021 @default.
- W2073650841 countsByYear W20736508412022 @default.
- W2073650841 countsByYear W20736508412023 @default.
- W2073650841 crossrefType "journal-article" @default.
- W2073650841 hasAuthorship W2073650841A5011747260 @default.
- W2073650841 hasAuthorship W2073650841A5026903824 @default.
- W2073650841 hasAuthorship W2073650841A5043975778 @default.
- W2073650841 hasConcept C121332964 @default.
- W2073650841 hasConcept C134306372 @default.
- W2073650841 hasConcept C135628077 @default.
- W2073650841 hasConcept C147370603 @default.
- W2073650841 hasConcept C159985019 @default.
- W2073650841 hasConcept C192562407 @default.
- W2073650841 hasConcept C2779227376 @default.
- W2073650841 hasConcept C28826006 @default.
- W2073650841 hasConcept C33923547 @default.
- W2073650841 hasConcept C57879066 @default.
- W2073650841 hasConcept C84655787 @default.
- W2073650841 hasConcept C97355855 @default.
- W2073650841 hasConceptScore W2073650841C121332964 @default.
- W2073650841 hasConceptScore W2073650841C134306372 @default.
- W2073650841 hasConceptScore W2073650841C135628077 @default.
- W2073650841 hasConceptScore W2073650841C147370603 @default.
- W2073650841 hasConceptScore W2073650841C159985019 @default.
- W2073650841 hasConceptScore W2073650841C192562407 @default.
- W2073650841 hasConceptScore W2073650841C2779227376 @default.
- W2073650841 hasConceptScore W2073650841C28826006 @default.
- W2073650841 hasConceptScore W2073650841C33923547 @default.
- W2073650841 hasConceptScore W2073650841C57879066 @default.
- W2073650841 hasConceptScore W2073650841C84655787 @default.
- W2073650841 hasConceptScore W2073650841C97355855 @default.
- W2073650841 hasLocation W20736508411 @default.
- W2073650841 hasOpenAccess W2073650841 @default.
- W2073650841 hasPrimaryLocation W20736508411 @default.
- W2073650841 hasRelatedWork W1609645098 @default.
- W2073650841 hasRelatedWork W2003924552 @default.
- W2073650841 hasRelatedWork W2031368922 @default.
- W2073650841 hasRelatedWork W2039347714 @default.
- W2073650841 hasRelatedWork W2068289871 @default.
- W2073650841 hasRelatedWork W2070967444 @default.
- W2073650841 hasRelatedWork W2077705378 @default.
- W2073650841 hasRelatedWork W2325050192 @default.
- W2073650841 hasRelatedWork W2613424006 @default.
- W2073650841 hasRelatedWork W2796519696 @default.
- W2073650841 hasVolume "52" @default.
- W2073650841 isParatext "false" @default.
- W2073650841 isRetracted "false" @default.
- W2073650841 magId "2073650841" @default.
- W2073650841 workType "article" @default.