Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073764433> ?p ?o ?g. }
- W2073764433 endingPage "106" @default.
- W2073764433 startingPage "91" @default.
- W2073764433 abstract "The spatial information of soil organic matter (SOM) is crucial for precision agriculture and environmental modeling. It is, however, difficult to obtain the regional details of SOM by dense sampling due to the high cost. Although a variety of interpolation methods are available for mapping SOM at regional scales, accurate prediction usually needs densely distributed samples and requires the interpolated variable to meet some constraints such as spatial stationarity. This paper introduces the Geographically Weighted Regression (GWR) technique as an alternative approach for SOM mapping. We interpolated the spatial distribution of SOM based on a limited number of samples with the incorporation of multiple independent variables. We also compared GWR with the ordinary least squares regression approach in mapping SOM. Results indicated that GWR could capture more local details and improve the prediction accuracy. However, more attention should be paid to the selection of independent variables." @default.
- W2073764433 created "2016-06-24" @default.
- W2073764433 creator A5009892201 @default.
- W2073764433 creator A5023560158 @default.
- W2073764433 creator A5055159158 @default.
- W2073764433 creator A5076973255 @default.
- W2073764433 creator A5091227972 @default.
- W2073764433 date "2013-07-23" @default.
- W2073764433 modified "2023-09-27" @default.
- W2073764433 title "Mapping soil organic matter with limited sample data using geographically weighted regression" @default.
- W2073764433 cites W1569647709 @default.
- W2073764433 cites W1933607165 @default.
- W2073764433 cites W1967969088 @default.
- W2073764433 cites W1976568930 @default.
- W2073764433 cites W1976840258 @default.
- W2073764433 cites W1977349531 @default.
- W2073764433 cites W1978056375 @default.
- W2073764433 cites W1992104696 @default.
- W2073764433 cites W2000017027 @default.
- W2073764433 cites W2003234527 @default.
- W2073764433 cites W2005279547 @default.
- W2073764433 cites W2009119458 @default.
- W2073764433 cites W2014279567 @default.
- W2073764433 cites W2018890928 @default.
- W2073764433 cites W2031383028 @default.
- W2073764433 cites W2037308434 @default.
- W2073764433 cites W2045066934 @default.
- W2073764433 cites W2046607127 @default.
- W2073764433 cites W2056545340 @default.
- W2073764433 cites W2063198709 @default.
- W2073764433 cites W2066089156 @default.
- W2073764433 cites W2066259824 @default.
- W2073764433 cites W2066361344 @default.
- W2073764433 cites W2067508524 @default.
- W2073764433 cites W2073857590 @default.
- W2073764433 cites W2079423106 @default.
- W2073764433 cites W2084113824 @default.
- W2073764433 cites W2089953116 @default.
- W2073764433 cites W2091720173 @default.
- W2073764433 cites W2099596347 @default.
- W2073764433 cites W2100348638 @default.
- W2073764433 cites W2102417376 @default.
- W2073764433 cites W2109785413 @default.
- W2073764433 cites W2136219952 @default.
- W2073764433 cites W2148169128 @default.
- W2073764433 cites W2153348951 @default.
- W2073764433 cites W3128360951 @default.
- W2073764433 cites W4300858224 @default.
- W2073764433 cites W59857474 @default.
- W2073764433 doi "https://doi.org/10.1080/14498596.2013.812024" @default.
- W2073764433 hasPublicationYear "2013" @default.
- W2073764433 type Work @default.
- W2073764433 sameAs 2073764433 @default.
- W2073764433 citedByCount "15" @default.
- W2073764433 countsByYear W20737644332016 @default.
- W2073764433 countsByYear W20737644332017 @default.
- W2073764433 countsByYear W20737644332018 @default.
- W2073764433 countsByYear W20737644332019 @default.
- W2073764433 countsByYear W20737644332020 @default.
- W2073764433 countsByYear W20737644332023 @default.
- W2073764433 crossrefType "journal-article" @default.
- W2073764433 hasAuthorship W2073764433A5009892201 @default.
- W2073764433 hasAuthorship W2073764433A5023560158 @default.
- W2073764433 hasAuthorship W2073764433A5055159158 @default.
- W2073764433 hasAuthorship W2073764433A5076973255 @default.
- W2073764433 hasAuthorship W2073764433A5091227972 @default.
- W2073764433 hasConcept C105795698 @default.
- W2073764433 hasConcept C106131492 @default.
- W2073764433 hasConcept C115961682 @default.
- W2073764433 hasConcept C134306372 @default.
- W2073764433 hasConcept C137800194 @default.
- W2073764433 hasConcept C140779682 @default.
- W2073764433 hasConcept C152877465 @default.
- W2073764433 hasConcept C154945302 @default.
- W2073764433 hasConcept C159620131 @default.
- W2073764433 hasConcept C182365436 @default.
- W2073764433 hasConcept C185592680 @default.
- W2073764433 hasConcept C198531522 @default.
- W2073764433 hasConcept C203332170 @default.
- W2073764433 hasConcept C205203396 @default.
- W2073764433 hasConcept C205649164 @default.
- W2073764433 hasConcept C31972630 @default.
- W2073764433 hasConcept C33923547 @default.
- W2073764433 hasConcept C41008148 @default.
- W2073764433 hasConcept C43617362 @default.
- W2073764433 hasConcept C58640448 @default.
- W2073764433 hasConcept C83546350 @default.
- W2073764433 hasConcept C94747663 @default.
- W2073764433 hasConcept C99656134 @default.
- W2073764433 hasConceptScore W2073764433C105795698 @default.
- W2073764433 hasConceptScore W2073764433C106131492 @default.
- W2073764433 hasConceptScore W2073764433C115961682 @default.
- W2073764433 hasConceptScore W2073764433C134306372 @default.
- W2073764433 hasConceptScore W2073764433C137800194 @default.
- W2073764433 hasConceptScore W2073764433C140779682 @default.
- W2073764433 hasConceptScore W2073764433C152877465 @default.
- W2073764433 hasConceptScore W2073764433C154945302 @default.
- W2073764433 hasConceptScore W2073764433C159620131 @default.