Matches in SemOpenAlex for { <https://semopenalex.org/work/W2073791503> ?p ?o ?g. }
- W2073791503 endingPage "10164" @default.
- W2073791503 startingPage "10150" @default.
- W2073791503 abstract "A new route to the synthesis of TS-1 has been developed using (NH4)2CO3 as a crystallization-mediating agent. In this way, the framework Ti content can be significantly increased without forming extraframework Ti species. The prepared catalyst had a Si/Ti ratio as low as 34 in contrast to the ratio of 58 achieved with the methods A and B established by the Enichem group (Clerici, M. G.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 159) and Thangaraj and Sivasanker (Thangaraj, A.; Sivasanker, S. J. Chem. Soc., Chem. Commun. 1992, 123), respectively. The material contained less defect sites than the samples synthesized by the other two methods. As a result, it showed much higher activity for the oxidation of various organic substrates, such as linear alkanes/alkenes and alcohols, styrene, and benzene. The crystallization mechanism of TS-1 in the presence of (NH4)2CO3 was studied by following the whole crystallization process with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetry/differential thermal analysis (TG/DTA), inductively coupled plasma atomic emission spectrometry (ICP), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-vis spectroscopy, and (29)Si MAS (magic-angle spinning) NMR spectroscopy techniques. It was shown that the presence of (NH4)2CO3 not only drastically lowered down pH, slowing down the crystallization process and making the incorporation of Ti into the framework match well with nucleation and crystal growth, but also modified the crystallization mechanism. It seems that the solid-phase transformation mechanism predominated in the crystallization process initiated by dissociation, reorganization, and recoalescence of the solidified gel although a small amount of nongelatinated Ti shifted to the solid during the crystal growth period. In contrast, a typical homogeneous nucleation mechanism occurred in the method A system. Thus, although in the method A system most of Ti cations was inserted into the lattice after the crystallization was nearly completed, the inclusion of Ti started at the earlier nucleation period in the presence of (NH4)2CO3. This is favorable for the incorporation of Ti into the framework, resulting in a more homogeneous distribution of Ti in the framework. Oxidation of 1-hexene and 2-hexanol over the samples collected during the whole crystallization process indicated that condensation of Ti-OH and Si-OH proceeded even after the crystallization was completed. This resulted in an increase in hydrophobicity and an overall improvement in microscopic character of Ti species and consequently a great increase in the catalytic activity with further progress of crystallization." @default.
- W2073791503 created "2016-06-24" @default.
- W2073791503 creator A5001511833 @default.
- W2073791503 creator A5034465663 @default.
- W2073791503 creator A5050328603 @default.
- W2073791503 creator A5067461005 @default.
- W2073791503 creator A5074713586 @default.
- W2073791503 creator A5079821348 @default.
- W2073791503 date "2008-07-10" @default.
- W2073791503 modified "2023-10-18" @default.
- W2073791503 title "Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species" @default.
- W2073791503 cites W1491580167 @default.
- W2073791503 cites W1860602910 @default.
- W2073791503 cites W1971135629 @default.
- W2073791503 cites W1973299391 @default.
- W2073791503 cites W1978694871 @default.
- W2073791503 cites W1979612817 @default.
- W2073791503 cites W1980039525 @default.
- W2073791503 cites W1980770687 @default.
- W2073791503 cites W1985791832 @default.
- W2073791503 cites W1987364219 @default.
- W2073791503 cites W1989235197 @default.
- W2073791503 cites W1989552004 @default.
- W2073791503 cites W1991216969 @default.
- W2073791503 cites W1995625844 @default.
- W2073791503 cites W1995645992 @default.
- W2073791503 cites W1997815555 @default.
- W2073791503 cites W1998449175 @default.
- W2073791503 cites W2001519246 @default.
- W2073791503 cites W2002005598 @default.
- W2073791503 cites W2007588951 @default.
- W2073791503 cites W2008328099 @default.
- W2073791503 cites W2008417015 @default.
- W2073791503 cites W201173170 @default.
- W2073791503 cites W2012745309 @default.
- W2073791503 cites W2018603525 @default.
- W2073791503 cites W2019159479 @default.
- W2073791503 cites W2019652707 @default.
- W2073791503 cites W2024536262 @default.
- W2073791503 cites W2025365376 @default.
- W2073791503 cites W2026898117 @default.
- W2073791503 cites W2030462510 @default.
- W2073791503 cites W2031731692 @default.
- W2073791503 cites W2035176265 @default.
- W2073791503 cites W2036895498 @default.
- W2073791503 cites W2037996425 @default.
- W2073791503 cites W2038134479 @default.
- W2073791503 cites W2039273856 @default.
- W2073791503 cites W2046863311 @default.
- W2073791503 cites W2056897820 @default.
- W2073791503 cites W2069538879 @default.
- W2073791503 cites W2076300021 @default.
- W2073791503 cites W2077963920 @default.
- W2073791503 cites W2078101132 @default.
- W2073791503 cites W2082593293 @default.
- W2073791503 cites W2089042536 @default.
- W2073791503 cites W2089612576 @default.
- W2073791503 cites W2089707287 @default.
- W2073791503 cites W2090526116 @default.
- W2073791503 cites W2090750357 @default.
- W2073791503 cites W2092445037 @default.
- W2073791503 cites W2092722352 @default.
- W2073791503 cites W2094607493 @default.
- W2073791503 cites W2112348039 @default.
- W2073791503 cites W2124490483 @default.
- W2073791503 cites W2135847676 @default.
- W2073791503 cites W2162772794 @default.
- W2073791503 cites W2171634560 @default.
- W2073791503 cites W2949750025 @default.
- W2073791503 cites W2951497036 @default.
- W2073791503 cites W46691135 @default.
- W2073791503 cites W9211113 @default.
- W2073791503 doi "https://doi.org/10.1021/ja7100399" @default.
- W2073791503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18613685" @default.
- W2073791503 hasPublicationYear "2008" @default.
- W2073791503 type Work @default.
- W2073791503 sameAs 2073791503 @default.
- W2073791503 citedByCount "304" @default.
- W2073791503 countsByYear W20737915032012 @default.
- W2073791503 countsByYear W20737915032013 @default.
- W2073791503 countsByYear W20737915032014 @default.
- W2073791503 countsByYear W20737915032015 @default.
- W2073791503 countsByYear W20737915032016 @default.
- W2073791503 countsByYear W20737915032017 @default.
- W2073791503 countsByYear W20737915032018 @default.
- W2073791503 countsByYear W20737915032019 @default.
- W2073791503 countsByYear W20737915032020 @default.
- W2073791503 countsByYear W20737915032021 @default.
- W2073791503 countsByYear W20737915032022 @default.
- W2073791503 countsByYear W20737915032023 @default.
- W2073791503 crossrefType "journal-article" @default.
- W2073791503 hasAuthorship W2073791503A5001511833 @default.
- W2073791503 hasAuthorship W2073791503A5034465663 @default.
- W2073791503 hasAuthorship W2073791503A5050328603 @default.
- W2073791503 hasAuthorship W2073791503A5067461005 @default.
- W2073791503 hasAuthorship W2073791503A5074713586 @default.
- W2073791503 hasAuthorship W2073791503A5079821348 @default.
- W2073791503 hasConcept C113196181 @default.