Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074006029> ?p ?o ?g. }
- W2074006029 abstract "A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an under-determined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm.This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi), which is used as confidence level. The unit network with higher P(D|Hi) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi), which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm.From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data." @default.
- W2074006029 created "2016-06-24" @default.
- W2074006029 creator A5019199401 @default.
- W2074006029 date "2007-07-13" @default.
- W2074006029 modified "2023-10-09" @default.
- W2074006029 title "Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks" @default.
- W2074006029 cites W1483030389 @default.
- W2074006029 cites W1512809401 @default.
- W2074006029 cites W1648445109 @default.
- W2074006029 cites W172411893 @default.
- W2074006029 cites W1759539608 @default.
- W2074006029 cites W1778251484 @default.
- W2074006029 cites W1966967749 @default.
- W2074006029 cites W1970783685 @default.
- W2074006029 cites W1971224531 @default.
- W2074006029 cites W1984448294 @default.
- W2074006029 cites W1990368851 @default.
- W2074006029 cites W1990912589 @default.
- W2074006029 cites W1993169996 @default.
- W2074006029 cites W2002315746 @default.
- W2074006029 cites W2004552422 @default.
- W2074006029 cites W2004975621 @default.
- W2074006029 cites W2008107402 @default.
- W2074006029 cites W2009559661 @default.
- W2074006029 cites W2010115820 @default.
- W2074006029 cites W2020679691 @default.
- W2074006029 cites W2028717300 @default.
- W2074006029 cites W2029888437 @default.
- W2074006029 cites W2033228162 @default.
- W2074006029 cites W2037036397 @default.
- W2074006029 cites W2039507617 @default.
- W2074006029 cites W2050721857 @default.
- W2074006029 cites W2052553543 @default.
- W2074006029 cites W2052721939 @default.
- W2074006029 cites W2053959320 @default.
- W2074006029 cites W2061064014 @default.
- W2074006029 cites W2061280979 @default.
- W2074006029 cites W2061439657 @default.
- W2074006029 cites W2073903736 @default.
- W2074006029 cites W2077158889 @default.
- W2074006029 cites W2077955011 @default.
- W2074006029 cites W2080252696 @default.
- W2074006029 cites W2083131603 @default.
- W2074006029 cites W2083731894 @default.
- W2074006029 cites W2084619201 @default.
- W2074006029 cites W2089085265 @default.
- W2074006029 cites W2091877548 @default.
- W2074006029 cites W2095622082 @default.
- W2074006029 cites W2098941196 @default.
- W2074006029 cites W2099775799 @default.
- W2074006029 cites W2100232316 @default.
- W2074006029 cites W2101892850 @default.
- W2074006029 cites W2102794349 @default.
- W2074006029 cites W2103453943 @default.
- W2074006029 cites W2107661034 @default.
- W2074006029 cites W2110244956 @default.
- W2074006029 cites W2116117181 @default.
- W2074006029 cites W2117767151 @default.
- W2074006029 cites W2121121043 @default.
- W2074006029 cites W2121150592 @default.
- W2074006029 cites W2123790304 @default.
- W2074006029 cites W2125904845 @default.
- W2074006029 cites W2127788692 @default.
- W2074006029 cites W2133401281 @default.
- W2074006029 cites W2135871131 @default.
- W2074006029 cites W2136776958 @default.
- W2074006029 cites W2139978918 @default.
- W2074006029 cites W2140619669 @default.
- W2074006029 cites W2142409266 @default.
- W2074006029 cites W2142634942 @default.
- W2074006029 cites W2146393404 @default.
- W2074006029 cites W2151182754 @default.
- W2074006029 cites W2152013468 @default.
- W2074006029 cites W2152559657 @default.
- W2074006029 cites W2155399784 @default.
- W2074006029 cites W2157731432 @default.
- W2074006029 cites W2160533336 @default.
- W2074006029 cites W2161409973 @default.
- W2074006029 cites W2161920970 @default.
- W2074006029 cites W2162141656 @default.
- W2074006029 cites W2163485494 @default.
- W2074006029 cites W2165044543 @default.
- W2074006029 cites W2166106382 @default.
- W2074006029 cites W2168157737 @default.
- W2074006029 cites W2171422445 @default.
- W2074006029 cites W2611370172 @default.
- W2074006029 cites W2764485636 @default.
- W2074006029 cites W2911546748 @default.
- W2074006029 doi "https://doi.org/10.1186/1471-2105-8-251" @default.
- W2074006029 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1959566" @default.
- W2074006029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17626641" @default.
- W2074006029 hasPublicationYear "2007" @default.
- W2074006029 type Work @default.
- W2074006029 sameAs 2074006029 @default.
- W2074006029 citedByCount "17" @default.
- W2074006029 countsByYear W20740060292012 @default.
- W2074006029 countsByYear W20740060292013 @default.
- W2074006029 countsByYear W20740060292015 @default.
- W2074006029 countsByYear W20740060292022 @default.
- W2074006029 crossrefType "journal-article" @default.