Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074093043> ?p ?o ?g. }
- W2074093043 endingPage "3307" @default.
- W2074093043 startingPage "3284" @default.
- W2074093043 abstract "Temporal coherence principle is an attractive biologically inspired learning rule to extract slowly varying features from quickly varying input data. In this paper we develop a new Nonlinear Neighborhood Preserving (NNP) technique, by utilizing the temporal coherence principle to find an optimal low dimensional representation from the original high dimensional data. NNP is based on a nonlinear expansion of the original input data, such as polynomials of a given degree. It can be solved by the eigenvalue problem without using gradient descent and is guaranteed to find the global optimum. NNP can be viewed as a nonlinear dimensionality reduction framework which takes into consideration both time series and data sets without an obvious temporal structure. According to different situations, we introduce three algorithms of NNP, named NNP-1, NNP-2, and NNP-3. The objective function of NNP-1 is equal to Slow Feature Analysis (SFA), and it works well for time series such as image sequences. NNP-2 artificially constructs time series consisting of neighboring points for data sets without a clear temporal structure such as image data. NNP-3 is proposed for classification tasks, which can minimize the distances of neighboring points in the embedding space and ensure that the remaining points are as far apart as possible simultaneously. Furthermore, the kernel extension of NNP is also discussed in this paper. The proposed algorithms work very well on some image sequences and image data sets compared to other methods. Meanwhile, we perform the classification task on the MNIST handwritten digit database using the supervised NNP algorithms. The experimental results demonstrate that NNP is an effective technique for nonlinear dimensionality reduction tasks." @default.
- W2074093043 created "2016-06-24" @default.
- W2074093043 creator A5005101751 @default.
- W2074093043 creator A5043641380 @default.
- W2074093043 creator A5052783753 @default.
- W2074093043 creator A5073583855 @default.
- W2074093043 creator A5078730212 @default.
- W2074093043 creator A5086195714 @default.
- W2074093043 date "2011-08-01" @default.
- W2074093043 modified "2023-09-28" @default.
- W2074093043 title "Nonlinear dimensionality reduction using a temporal coherence principle" @default.
- W2074093043 cites W1491127862 @default.
- W2074093043 cites W1578196132 @default.
- W2074093043 cites W1841710253 @default.
- W2074093043 cites W1878339875 @default.
- W2074093043 cites W1996118086 @default.
- W2074093043 cites W2001141328 @default.
- W2074093043 cites W2006554089 @default.
- W2074093043 cites W2017588182 @default.
- W2074093043 cites W2028463070 @default.
- W2074093043 cites W2035353864 @default.
- W2074093043 cites W2048857329 @default.
- W2074093043 cites W2053186076 @default.
- W2074093043 cites W2074446606 @default.
- W2074093043 cites W2077776048 @default.
- W2074093043 cites W2080322700 @default.
- W2074093043 cites W2089586993 @default.
- W2074093043 cites W2093402979 @default.
- W2074093043 cites W2096388912 @default.
- W2074093043 cites W2097308346 @default.
- W2074093043 cites W2112796928 @default.
- W2074093043 cites W2118527389 @default.
- W2074093043 cites W2124237441 @default.
- W2074093043 cites W2135833910 @default.
- W2074093043 cites W2140095548 @default.
- W2074093043 cites W2142457795 @default.
- W2074093043 cites W2143103810 @default.
- W2074093043 cites W2146444479 @default.
- W2074093043 cites W2154041543 @default.
- W2074093043 cites W2156838815 @default.
- W2074093043 cites W2157175865 @default.
- W2074093043 cites W2157349214 @default.
- W2074093043 cites W2162355375 @default.
- W2074093043 cites W2169394305 @default.
- W2074093043 cites W2169507824 @default.
- W2074093043 cites W2170393096 @default.
- W2074093043 cites W2274591090 @default.
- W2074093043 cites W3022436500 @default.
- W2074093043 cites W3148981562 @default.
- W2074093043 cites W4232982293 @default.
- W2074093043 cites W65738273 @default.
- W2074093043 doi "https://doi.org/10.1016/j.ins.2011.04.001" @default.
- W2074093043 hasPublicationYear "2011" @default.
- W2074093043 type Work @default.
- W2074093043 sameAs 2074093043 @default.
- W2074093043 citedByCount "23" @default.
- W2074093043 countsByYear W20740930432012 @default.
- W2074093043 countsByYear W20740930432013 @default.
- W2074093043 countsByYear W20740930432014 @default.
- W2074093043 countsByYear W20740930432015 @default.
- W2074093043 countsByYear W20740930432016 @default.
- W2074093043 countsByYear W20740930432017 @default.
- W2074093043 countsByYear W20740930432018 @default.
- W2074093043 countsByYear W20740930432019 @default.
- W2074093043 countsByYear W20740930432020 @default.
- W2074093043 countsByYear W20740930432021 @default.
- W2074093043 countsByYear W20740930432022 @default.
- W2074093043 crossrefType "journal-article" @default.
- W2074093043 hasAuthorship W2074093043A5005101751 @default.
- W2074093043 hasAuthorship W2074093043A5043641380 @default.
- W2074093043 hasAuthorship W2074093043A5052783753 @default.
- W2074093043 hasAuthorship W2074093043A5073583855 @default.
- W2074093043 hasAuthorship W2074093043A5078730212 @default.
- W2074093043 hasAuthorship W2074093043A5086195714 @default.
- W2074093043 hasConcept C105795698 @default.
- W2074093043 hasConcept C111030470 @default.
- W2074093043 hasConcept C11413529 @default.
- W2074093043 hasConcept C114614502 @default.
- W2074093043 hasConcept C121332964 @default.
- W2074093043 hasConcept C143724316 @default.
- W2074093043 hasConcept C151730666 @default.
- W2074093043 hasConcept C151876577 @default.
- W2074093043 hasConcept C153180895 @default.
- W2074093043 hasConcept C154945302 @default.
- W2074093043 hasConcept C158622935 @default.
- W2074093043 hasConcept C190502265 @default.
- W2074093043 hasConcept C21080849 @default.
- W2074093043 hasConcept C2781181686 @default.
- W2074093043 hasConcept C33923547 @default.
- W2074093043 hasConcept C41008148 @default.
- W2074093043 hasConcept C41608201 @default.
- W2074093043 hasConcept C50644808 @default.
- W2074093043 hasConcept C62520636 @default.
- W2074093043 hasConcept C70518039 @default.
- W2074093043 hasConcept C74193536 @default.
- W2074093043 hasConcept C86803240 @default.
- W2074093043 hasConceptScore W2074093043C105795698 @default.
- W2074093043 hasConceptScore W2074093043C111030470 @default.