Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074157239> ?p ?o ?g. }
- W2074157239 abstract "The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical models to gene expression data is becoming increasingly popular and successful. However, increasing model complexity means that more powerful global optimisation techniques are required for model fitting. The parallel Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary Strategy (piES) has yet been demonstrated to be effective for this task.Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA on the same test problem, measuring the time required to reach particular levels of residual error, and show that it shows much faster convergence than pLSA across all optimisation conditions tested.Our results demonstrate that the piES is consistently faster and more reliable than the pLSA algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially well suited to further improvements and adaptations: Firstly, the algorithm's fast initial descent speed and high reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern multi-core computing architectures." @default.
- W2074157239 created "2016-06-24" @default.
- W2074157239 creator A5008115010 @default.
- W2074157239 creator A5049890044 @default.
- W2074157239 date "2010-03-02" @default.
- W2074157239 modified "2023-10-13" @default.
- W2074157239 title "Reverse engineering a gene network using an asynchronous parallel evolution strategy" @default.
- W2074157239 cites W1781095925 @default.
- W2074157239 cites W1815472980 @default.
- W2074157239 cites W1982258483 @default.
- W2074157239 cites W1989119979 @default.
- W2074157239 cites W1991138583 @default.
- W2074157239 cites W1992901075 @default.
- W2074157239 cites W1997774242 @default.
- W2074157239 cites W2010586622 @default.
- W2074157239 cites W2010795839 @default.
- W2074157239 cites W2017848214 @default.
- W2074157239 cites W2022851401 @default.
- W2074157239 cites W2024060531 @default.
- W2074157239 cites W2028582548 @default.
- W2074157239 cites W2031103608 @default.
- W2074157239 cites W2036338631 @default.
- W2074157239 cites W2039813668 @default.
- W2074157239 cites W2043564369 @default.
- W2074157239 cites W2045302752 @default.
- W2074157239 cites W2061329466 @default.
- W2074157239 cites W2066238490 @default.
- W2074157239 cites W2073307618 @default.
- W2074157239 cites W2075639867 @default.
- W2074157239 cites W2085452108 @default.
- W2074157239 cites W2100603120 @default.
- W2074157239 cites W2102229444 @default.
- W2074157239 cites W2111011458 @default.
- W2074157239 cites W2117607492 @default.
- W2074157239 cites W2128782793 @default.
- W2074157239 cites W2135105208 @default.
- W2074157239 cites W2137057693 @default.
- W2074157239 cites W2145899551 @default.
- W2074157239 cites W2149579404 @default.
- W2074157239 cites W2149994559 @default.
- W2074157239 cites W2151339633 @default.
- W2074157239 cites W2165603655 @default.
- W2074157239 cites W2166012954 @default.
- W2074157239 cites W2167190345 @default.
- W2074157239 cites W2169354676 @default.
- W2074157239 doi "https://doi.org/10.1186/1752-0509-4-17" @default.
- W2074157239 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2850326" @default.
- W2074157239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20196855" @default.
- W2074157239 hasPublicationYear "2010" @default.
- W2074157239 type Work @default.
- W2074157239 sameAs 2074157239 @default.
- W2074157239 citedByCount "34" @default.
- W2074157239 countsByYear W20741572392012 @default.
- W2074157239 countsByYear W20741572392013 @default.
- W2074157239 countsByYear W20741572392014 @default.
- W2074157239 countsByYear W20741572392015 @default.
- W2074157239 countsByYear W20741572392016 @default.
- W2074157239 countsByYear W20741572392017 @default.
- W2074157239 countsByYear W20741572392018 @default.
- W2074157239 countsByYear W20741572392019 @default.
- W2074157239 countsByYear W20741572392020 @default.
- W2074157239 countsByYear W20741572392021 @default.
- W2074157239 countsByYear W20741572392022 @default.
- W2074157239 countsByYear W20741572392023 @default.
- W2074157239 crossrefType "journal-article" @default.
- W2074157239 hasAuthorship W2074157239A5008115010 @default.
- W2074157239 hasAuthorship W2074157239A5049890044 @default.
- W2074157239 hasBestOaLocation W20741572391 @default.
- W2074157239 hasConcept C111919701 @default.
- W2074157239 hasConcept C112933361 @default.
- W2074157239 hasConcept C11413529 @default.
- W2074157239 hasConcept C126980161 @default.
- W2074157239 hasConcept C142362112 @default.
- W2074157239 hasConcept C151319957 @default.
- W2074157239 hasConcept C153349607 @default.
- W2074157239 hasConcept C154945302 @default.
- W2074157239 hasConcept C159149176 @default.
- W2074157239 hasConcept C162324750 @default.
- W2074157239 hasConcept C199360897 @default.
- W2074157239 hasConcept C207850805 @default.
- W2074157239 hasConcept C2775937380 @default.
- W2074157239 hasConcept C2777303404 @default.
- W2074157239 hasConcept C2779960059 @default.
- W2074157239 hasConcept C31258907 @default.
- W2074157239 hasConcept C41008148 @default.
- W2074157239 hasConcept C50522688 @default.
- W2074157239 hasConceptScore W2074157239C111919701 @default.
- W2074157239 hasConceptScore W2074157239C112933361 @default.
- W2074157239 hasConceptScore W2074157239C11413529 @default.
- W2074157239 hasConceptScore W2074157239C126980161 @default.
- W2074157239 hasConceptScore W2074157239C142362112 @default.
- W2074157239 hasConceptScore W2074157239C151319957 @default.
- W2074157239 hasConceptScore W2074157239C153349607 @default.
- W2074157239 hasConceptScore W2074157239C154945302 @default.
- W2074157239 hasConceptScore W2074157239C159149176 @default.
- W2074157239 hasConceptScore W2074157239C162324750 @default.
- W2074157239 hasConceptScore W2074157239C199360897 @default.
- W2074157239 hasConceptScore W2074157239C207850805 @default.
- W2074157239 hasConceptScore W2074157239C2775937380 @default.
- W2074157239 hasConceptScore W2074157239C2777303404 @default.