Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074229384> ?p ?o ?g. }
- W2074229384 abstract "Abstract Singular surfaces are shown to be dense in the Teichmuller space of all Riemann surfaces and in the grassmannian. This happens because a regular surface of genus h, obtained identifying 2h in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale e is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius e. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e m operators." @default.
- W2074229384 created "2016-06-24" @default.
- W2074229384 creator A5057148562 @default.
- W2074229384 date "1990-08-01" @default.
- W2074229384 modified "2023-09-23" @default.
- W2074229384 title "Non-perturbative string theories and singular surfaces" @default.
- W2074229384 cites W1590194614 @default.
- W2074229384 cites W1594563152 @default.
- W2074229384 cites W1966010547 @default.
- W2074229384 cites W1966549880 @default.
- W2074229384 cites W1972210057 @default.
- W2074229384 cites W1979502187 @default.
- W2074229384 cites W1984795402 @default.
- W2074229384 cites W1987143739 @default.
- W2074229384 cites W1994282665 @default.
- W2074229384 cites W1995971752 @default.
- W2074229384 cites W1996954900 @default.
- W2074229384 cites W2000226231 @default.
- W2074229384 cites W2004005781 @default.
- W2074229384 cites W2008380185 @default.
- W2074229384 cites W2010780144 @default.
- W2074229384 cites W2010927888 @default.
- W2074229384 cites W2014827677 @default.
- W2074229384 cites W2021786973 @default.
- W2074229384 cites W2022544578 @default.
- W2074229384 cites W2023602476 @default.
- W2074229384 cites W2028402761 @default.
- W2074229384 cites W2029339103 @default.
- W2074229384 cites W2029690306 @default.
- W2074229384 cites W2035152063 @default.
- W2074229384 cites W2048117538 @default.
- W2074229384 cites W2048954298 @default.
- W2074229384 cites W2054102751 @default.
- W2074229384 cites W2057687052 @default.
- W2074229384 cites W2058695304 @default.
- W2074229384 cites W2060243892 @default.
- W2074229384 cites W2062862360 @default.
- W2074229384 cites W2070101111 @default.
- W2074229384 cites W2071113539 @default.
- W2074229384 cites W2077660541 @default.
- W2074229384 cites W2080509478 @default.
- W2074229384 cites W2082832144 @default.
- W2074229384 cites W2085792172 @default.
- W2074229384 cites W2087276725 @default.
- W2074229384 cites W2088422993 @default.
- W2074229384 cites W2088680200 @default.
- W2074229384 cites W2091162844 @default.
- W2074229384 cites W2093984408 @default.
- W2074229384 cites W2095125522 @default.
- W2074229384 cites W2097616202 @default.
- W2074229384 cites W2138554348 @default.
- W2074229384 cites W2197001106 @default.
- W2074229384 doi "https://doi.org/10.1016/0370-2693(90)91308-x" @default.
- W2074229384 hasPublicationYear "1990" @default.
- W2074229384 type Work @default.
- W2074229384 sameAs 2074229384 @default.
- W2074229384 citedByCount "0" @default.
- W2074229384 crossrefType "journal-article" @default.
- W2074229384 hasAuthorship W2074229384A5057148562 @default.
- W2074229384 hasConcept C121332964 @default.
- W2074229384 hasConcept C134306372 @default.
- W2074229384 hasConcept C157369684 @default.
- W2074229384 hasConcept C163716315 @default.
- W2074229384 hasConcept C18556879 @default.
- W2074229384 hasConcept C24084028 @default.
- W2074229384 hasConcept C2524010 @default.
- W2074229384 hasConcept C2778401447 @default.
- W2074229384 hasConcept C33923547 @default.
- W2074229384 hasConcept C37914503 @default.
- W2074229384 hasConcept C59822182 @default.
- W2074229384 hasConcept C62520636 @default.
- W2074229384 hasConcept C86803240 @default.
- W2074229384 hasConcept C99844830 @default.
- W2074229384 hasConceptScore W2074229384C121332964 @default.
- W2074229384 hasConceptScore W2074229384C134306372 @default.
- W2074229384 hasConceptScore W2074229384C157369684 @default.
- W2074229384 hasConceptScore W2074229384C163716315 @default.
- W2074229384 hasConceptScore W2074229384C18556879 @default.
- W2074229384 hasConceptScore W2074229384C24084028 @default.
- W2074229384 hasConceptScore W2074229384C2524010 @default.
- W2074229384 hasConceptScore W2074229384C2778401447 @default.
- W2074229384 hasConceptScore W2074229384C33923547 @default.
- W2074229384 hasConceptScore W2074229384C37914503 @default.
- W2074229384 hasConceptScore W2074229384C59822182 @default.
- W2074229384 hasConceptScore W2074229384C62520636 @default.
- W2074229384 hasConceptScore W2074229384C86803240 @default.
- W2074229384 hasConceptScore W2074229384C99844830 @default.
- W2074229384 hasLocation W20742293841 @default.
- W2074229384 hasOpenAccess W2074229384 @default.
- W2074229384 hasPrimaryLocation W20742293841 @default.
- W2074229384 hasRelatedWork W1851626589 @default.
- W2074229384 hasRelatedWork W1963558236 @default.
- W2074229384 hasRelatedWork W1973710226 @default.
- W2074229384 hasRelatedWork W1975978384 @default.
- W2074229384 hasRelatedWork W1980161087 @default.
- W2074229384 hasRelatedWork W1980288622 @default.
- W2074229384 hasRelatedWork W1980800252 @default.
- W2074229384 hasRelatedWork W1992659738 @default.
- W2074229384 hasRelatedWork W2006127797 @default.
- W2074229384 hasRelatedWork W2010392558 @default.