Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074250663> ?p ?o ?g. }
- W2074250663 endingPage "61" @default.
- W2074250663 startingPage "39" @default.
- W2074250663 abstract "Skarn rocks occur at the contact between calcite-bearing dolomitic marbles and granitoids (massive varieties with pegmatites) in close spatial association with the mica schist-hosted Proterozoic Pb–Cu–Ag sulfide deposits at Sargipali, Sundergarh District, Eastern India. The exoskarn (pyroxene–garnet) of variable width (1 to 30 m) occurs in marble proximal to the granitic intrusion, and endoskarn (pyroxene–epidote) is variably developed (< 1 to 10 m). Molybdenum-free scheelite with minor pyrrhotite (0.2%) is found only in late garnet–clinopyroxene exoskarn assemblages. In the Sargipali area early regional and contact metamorphism converted impure carbonate lithologies to calc-silicate hornfels. Subsequent contact metasomatism formed the skarn rocks, which are well zoned geochemically, mineralogically, and texturally in the sequence pyroxene–garnet–amphibole from the calcite-bearing dolomitic marble to granitoid contact. The presence of zoning relative to igneous contacts indicates that skarn-forming fluids originated from the crystallizing magma. The skarns are composed of clinopyroxene, garnet, calcic amphiboles (K-rich ferropargasite, ferrohornblende, hastingsite, tschermakite, magnesiohornblende, and actinolite), wollastonite, plagioclase, potash feldspar, epidote, titanite, and quartz. The skarns are notably enriched in Al, Mg, and Fe. Garnets are grossularite–almandine with 9 to 10 mol% spessartine, whereas pyroxenes are hedenbergitic to diopsidic in composition. The variable Mg:Mn:Fe proportions in the skarn clinopyroxene suggest the formation of clinopyroxene compositions from relatively homogeneous fluids, which experienced local variations in their Mg:Mn:Fe proportion instead of from successively different compositions. The earliest hornfels assemblage (Stage I) formed initially above 500 °C. This was overprinted by prograde anhydrous skarn (Stage II) at about 500 °C–600 °C and of 3–4 kbar pressure in a mildly reducing environment under X(CO2) = ~ 0.18. With increasing fluid/rock interaction, epidote, green amphibole ± quartz-bearing retrograde skarn (Stage III) formed as temperature decreased to approximately 480 °C at X(CO2) = 0.05. Late hydrothermal alteration (Stage IV) caused the formation of actinolite. There is a correlation between intrusion composition and the metal contents of associated skarns. Calc-silicate mineral compositions in the Sargipali skarns are similar to those in other W skarn systems. This granitic complex is comprised of reduced, highly evolved, and metallogenically specialized S-type leucogranites, comparable to those commonly associated with Mo-poor W skarns. A syn-collisional tectonic setting is proposed, based on field evidence, the relative timing of the intrusions with respect to metasedimentary and carbonate rocks, and empirical trace-element geochemical evidence. Based on field evidence and geochemistry, two main intrusive phases have been recognized in the Sargipali granitoid pluton: (1) an undeformed massive granite in the west, and (2) a foliated granite along the eastern margin. Porphyritic granites are also recognized locally, which are older than the other units. A genetic link exists between granite magmatism, and the formation of pegmatites in the region. The granite–pegmatite system is highly peraluminous (Al-saturation index ranges from 1.2 to 1.8). The peraluminous character increases from the foliated and porphyritic granite through massive granite to pegmatite. The foliated granite has higher FeOt, TiO2, MgO, Ba, Sr, Zr, Th, ∑ REE (~ 200 ppm), and lower SiO2 contents than massive granite (∑ REE = ~ 22 ppm). Both of these granite phases are highly evolved, while the massive variety is more evolved, and is mostly dominated by variable source rock composition. The minimum crystallization temperature of granite magma is at 628 °C–695 °C and greater than the 3 kbar pressure. The granites may have been generated by partial melting of metasedimentary rocks of the Gangpur Group that might have been enriched in W. The exsolving W-rich magmatic fluids interacted extensively with carbonate rocks and formed disseminated scheelite mineralization. New CHIME U–Th–Pb monazite dates for foliated granites of Sargipali are 960 ± 10 Ma, while massive granite shows two ages; the U-poor population and U-rich population yielded 955 ± 15 Ma and 997 ± 13 Ma, respectively. These ages indicate that the deformed foliated granite is slightly older than the undeformed massive granite, while there exists a still older intrusion (porphyritic granite) that is syn- to post-kinematic to the major phase of deformation (D1) of the enveloping country rock at ~ 1 Ga. Overall, the Sargipali granitoid pluton post-dates the syngenetic Pb–Cu–Ag sulfide mineralization in the region at ~ 1.69 Ga." @default.
- W2074250663 created "2016-06-24" @default.
- W2074250663 creator A5019407058 @default.
- W2074250663 creator A5044404954 @default.
- W2074250663 date "2011-01-01" @default.
- W2074250663 modified "2023-10-05" @default.
- W2074250663 title "Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India" @default.
- W2074250663 cites W1514994218 @default.
- W2074250663 cites W1830358639 @default.
- W2074250663 cites W1965840024 @default.
- W2074250663 cites W1969859799 @default.
- W2074250663 cites W1970911546 @default.
- W2074250663 cites W1973157177 @default.
- W2074250663 cites W1973386829 @default.
- W2074250663 cites W1973570538 @default.
- W2074250663 cites W1978801698 @default.
- W2074250663 cites W1980544215 @default.
- W2074250663 cites W1991202690 @default.
- W2074250663 cites W1995150562 @default.
- W2074250663 cites W2003437848 @default.
- W2074250663 cites W2011780169 @default.
- W2074250663 cites W2013590406 @default.
- W2074250663 cites W2014722475 @default.
- W2074250663 cites W2019372598 @default.
- W2074250663 cites W2020159892 @default.
- W2074250663 cites W2021641264 @default.
- W2074250663 cites W2029055198 @default.
- W2074250663 cites W2031367965 @default.
- W2074250663 cites W2034057192 @default.
- W2074250663 cites W2044213555 @default.
- W2074250663 cites W2044354520 @default.
- W2074250663 cites W2046961523 @default.
- W2074250663 cites W2049830684 @default.
- W2074250663 cites W2052104775 @default.
- W2074250663 cites W2054261909 @default.
- W2074250663 cites W2070614375 @default.
- W2074250663 cites W2071280816 @default.
- W2074250663 cites W2071866397 @default.
- W2074250663 cites W2073149430 @default.
- W2074250663 cites W2080150458 @default.
- W2074250663 cites W2081243081 @default.
- W2074250663 cites W2085400116 @default.
- W2074250663 cites W2088848716 @default.
- W2074250663 cites W2091184061 @default.
- W2074250663 cites W2099966363 @default.
- W2074250663 cites W2108971421 @default.
- W2074250663 cites W2115375715 @default.
- W2074250663 cites W2122563078 @default.
- W2074250663 cites W2127888210 @default.
- W2074250663 cites W2131510962 @default.
- W2074250663 cites W2133834137 @default.
- W2074250663 cites W2145173997 @default.
- W2074250663 cites W2154188925 @default.
- W2074250663 cites W2159232128 @default.
- W2074250663 cites W2163394313 @default.
- W2074250663 cites W2163811608 @default.
- W2074250663 cites W2164468447 @default.
- W2074250663 cites W2164925786 @default.
- W2074250663 cites W2165976294 @default.
- W2074250663 cites W2314637540 @default.
- W2074250663 cites W2330756480 @default.
- W2074250663 cites W2331173325 @default.
- W2074250663 cites W4237139043 @default.
- W2074250663 cites W4244540826 @default.
- W2074250663 cites W4246560085 @default.
- W2074250663 cites W4246683761 @default.
- W2074250663 cites W4256269350 @default.
- W2074250663 cites W8132990 @default.
- W2074250663 doi "https://doi.org/10.1016/j.gexplo.2010.07.005" @default.
- W2074250663 hasPublicationYear "2011" @default.
- W2074250663 type Work @default.
- W2074250663 sameAs 2074250663 @default.
- W2074250663 citedByCount "22" @default.
- W2074250663 countsByYear W20742506632014 @default.
- W2074250663 countsByYear W20742506632015 @default.
- W2074250663 countsByYear W20742506632016 @default.
- W2074250663 countsByYear W20742506632017 @default.
- W2074250663 countsByYear W20742506632018 @default.
- W2074250663 countsByYear W20742506632019 @default.
- W2074250663 countsByYear W20742506632020 @default.
- W2074250663 countsByYear W20742506632021 @default.
- W2074250663 countsByYear W20742506632022 @default.
- W2074250663 crossrefType "journal-article" @default.
- W2074250663 hasAuthorship W2074250663A5019407058 @default.
- W2074250663 hasAuthorship W2074250663A5044404954 @default.
- W2074250663 hasConcept C112764850 @default.
- W2074250663 hasConcept C127313418 @default.
- W2074250663 hasConcept C151730666 @default.
- W2074250663 hasConcept C167919410 @default.
- W2074250663 hasConcept C17409809 @default.
- W2074250663 hasConcept C194179716 @default.
- W2074250663 hasConcept C195843664 @default.
- W2074250663 hasConcept C26687426 @default.
- W2074250663 hasConcept C2776008383 @default.
- W2074250663 hasConcept C2776152364 @default.
- W2074250663 hasConcept C2777229588 @default.
- W2074250663 hasConcept C2777640183 @default.
- W2074250663 hasConcept C2777844515 @default.