Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074282605> ?p ?o ?g. }
- W2074282605 endingPage "10" @default.
- W2074282605 startingPage "1" @default.
- W2074282605 abstract "• A numerical solution of stiff equations using Taylor series, scaling and squaring. • The algorithm applied to point kinetics equation of nuclear reactor dynamics. • Application of the algorithm to large sampling period and multiple input systems. • Proposed method is more accurate than conventional methods. A system of differential equations is derived to model the dynamics of neutron density and the delayed neutron precursors within a point kinetics equation modeling framework for a nuclear reactor. The point kinetic equations are mathematically characterized as stiff, occasionally nonlinear, ordinary differential equations, posing significant challenges when numerical solutions are sought, and traditionally resulting in the need for smaller time step intervals within various computational schemes. In light of the above realization, the present paper proposes a new discretization/simulation method that is: (i) conceptually inspired by system-theoretic notions used in the analysis of sampled-date system dynamics (discrete-time system dynamics) under potentially irreducible large sampling periods/time steps, and (ii) technically based on Taylor–Lie series and the zero-order hold (ZOH). Within the proposed time discretization framework, the sampled-data representation of the original point kinetic system of equations is derived for an arbitrary size of the time-step used. Furthermore, within the context of the proposed approach, the integration of a scaling-and-squaring technique is pursued for the attainment of further performance enhancement of the proposed simulation technique. The performance of the proposed approach is evaluated in several case studies involving step and ramp-like reactivity profiles as well as multiple input examples that simultaneously account for variations in reactivity and neutron source function profiles. In particular, it is demonstrated, that by applying the proposed method, the inherent stiffness problem associated with the simulation challenges of the point kinetic equations can be adequately addressed within a wide range of reactor operating conditions, including large sampling periods dictated by physical and/or technical limitations associated with the current state of sensor and digital reactor control system technology." @default.
- W2074282605 created "2016-06-24" @default.
- W2074282605 creator A5004027998 @default.
- W2074282605 creator A5017676848 @default.
- W2074282605 creator A5021376706 @default.
- W2074282605 creator A5031342322 @default.
- W2074282605 creator A5050420621 @default.
- W2074282605 creator A5078697093 @default.
- W2074282605 date "2014-06-01" @default.
- W2074282605 modified "2023-09-27" @default.
- W2074282605 title "A numerical solution to the point kinetic equations using Taylor–Lie series combined with a scaling and squaring technique" @default.
- W2074282605 cites W1577028228 @default.
- W2074282605 cites W1578823641 @default.
- W2074282605 cites W1658829761 @default.
- W2074282605 cites W1971213003 @default.
- W2074282605 cites W1976717775 @default.
- W2074282605 cites W1996973964 @default.
- W2074282605 cites W1999476178 @default.
- W2074282605 cites W2002216374 @default.
- W2074282605 cites W2002444491 @default.
- W2074282605 cites W2011691634 @default.
- W2074282605 cites W2013581531 @default.
- W2074282605 cites W2066593627 @default.
- W2074282605 cites W2071313461 @default.
- W2074282605 cites W2078580565 @default.
- W2074282605 cites W2086858036 @default.
- W2074282605 cites W2163291691 @default.
- W2074282605 cites W2298672746 @default.
- W2074282605 cites W4234412259 @default.
- W2074282605 cites W2028833120 @default.
- W2074282605 doi "https://doi.org/10.1016/j.nucengdes.2013.12.066" @default.
- W2074282605 hasPublicationYear "2014" @default.
- W2074282605 type Work @default.
- W2074282605 sameAs 2074282605 @default.
- W2074282605 citedByCount "5" @default.
- W2074282605 countsByYear W20742826052016 @default.
- W2074282605 countsByYear W20742826052019 @default.
- W2074282605 countsByYear W20742826052020 @default.
- W2074282605 countsByYear W20742826052023 @default.
- W2074282605 crossrefType "journal-article" @default.
- W2074282605 hasAuthorship W2074282605A5004027998 @default.
- W2074282605 hasAuthorship W2074282605A5017676848 @default.
- W2074282605 hasAuthorship W2074282605A5021376706 @default.
- W2074282605 hasAuthorship W2074282605A5031342322 @default.
- W2074282605 hasAuthorship W2074282605A5050420621 @default.
- W2074282605 hasAuthorship W2074282605A5078697093 @default.
- W2074282605 hasConcept C121332964 @default.
- W2074282605 hasConcept C134306372 @default.
- W2074282605 hasConcept C143724316 @default.
- W2074282605 hasConcept C151730666 @default.
- W2074282605 hasConcept C158622935 @default.
- W2074282605 hasConcept C158946198 @default.
- W2074282605 hasConcept C17744445 @default.
- W2074282605 hasConcept C199539241 @default.
- W2074282605 hasConcept C2524010 @default.
- W2074282605 hasConcept C2776359362 @default.
- W2074282605 hasConcept C2779343474 @default.
- W2074282605 hasConcept C28826006 @default.
- W2074282605 hasConcept C33923547 @default.
- W2074282605 hasConcept C51544822 @default.
- W2074282605 hasConcept C62520636 @default.
- W2074282605 hasConcept C73000952 @default.
- W2074282605 hasConcept C78045399 @default.
- W2074282605 hasConcept C86803240 @default.
- W2074282605 hasConcept C94625758 @default.
- W2074282605 hasConcept C99844830 @default.
- W2074282605 hasConceptScore W2074282605C121332964 @default.
- W2074282605 hasConceptScore W2074282605C134306372 @default.
- W2074282605 hasConceptScore W2074282605C143724316 @default.
- W2074282605 hasConceptScore W2074282605C151730666 @default.
- W2074282605 hasConceptScore W2074282605C158622935 @default.
- W2074282605 hasConceptScore W2074282605C158946198 @default.
- W2074282605 hasConceptScore W2074282605C17744445 @default.
- W2074282605 hasConceptScore W2074282605C199539241 @default.
- W2074282605 hasConceptScore W2074282605C2524010 @default.
- W2074282605 hasConceptScore W2074282605C2776359362 @default.
- W2074282605 hasConceptScore W2074282605C2779343474 @default.
- W2074282605 hasConceptScore W2074282605C28826006 @default.
- W2074282605 hasConceptScore W2074282605C33923547 @default.
- W2074282605 hasConceptScore W2074282605C51544822 @default.
- W2074282605 hasConceptScore W2074282605C62520636 @default.
- W2074282605 hasConceptScore W2074282605C73000952 @default.
- W2074282605 hasConceptScore W2074282605C78045399 @default.
- W2074282605 hasConceptScore W2074282605C86803240 @default.
- W2074282605 hasConceptScore W2074282605C94625758 @default.
- W2074282605 hasConceptScore W2074282605C99844830 @default.
- W2074282605 hasLocation W20742826051 @default.
- W2074282605 hasOpenAccess W2074282605 @default.
- W2074282605 hasPrimaryLocation W20742826051 @default.
- W2074282605 hasRelatedWork W1578823641 @default.
- W2074282605 hasRelatedWork W1893587456 @default.
- W2074282605 hasRelatedWork W2025077088 @default.
- W2074282605 hasRelatedWork W2071313461 @default.
- W2074282605 hasRelatedWork W2079755638 @default.
- W2074282605 hasRelatedWork W2162372711 @default.
- W2074282605 hasRelatedWork W2164418853 @default.
- W2074282605 hasRelatedWork W2343026828 @default.
- W2074282605 hasRelatedWork W2417500295 @default.