Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074346324> ?p ?o ?g. }
- W2074346324 endingPage "190" @default.
- W2074346324 startingPage "181" @default.
- W2074346324 abstract "The complexity of the relationship between suspended sediment concentration (SSC) and river discharge (Q) remains a challenge for SSC prediction in hyperconcentrated rivers. In this study, the wavelet-artificial neural network model (WANN) was built to predict SSC in the Kuye River, a representative hyperconcentrated river in the middle Yellow River catchments of China. In the WANN model, the observed daily time series for Q and SSC of 2193 days (from 1967 to 1972) were decomposed into subseries at different scales using discrete wavelet analysis. Then, the effective subseries were selected to construct Q/SSC inputs to the feed-forward back-propagation artificial neural network (BP ANN) to predict SSC 1 day in advance (the time resolution of the observed data). The coefficient of determination (R2) and root-mean square error (RMSE) were adopted to evaluate the model's performance. The WANN model showed higher prediction accuracy (R2 = 0.846 and RMSE = 29.82) than the sediment rating curve (SRC) model (R2 = 0.537 and RMSE = 55.40) or the ANN model (R2 = 0.664 and RMSE = 43.13). The WANN model exhibited more robust performance than the SRC and ANN models, indicated by the appropriate values of error autocorrelation and input-error correlation. Negative values of predicted SSC occurred in ANN and in WANN models. By adjusting the negative values to zero, the WANN R2 was improved by 4.3% from 0.846 to 0.882. In general, the results illustrate that the WANN model better predicts SSC in a hyperconcentrated river setting, with highly nonlinear and nonstationary time series." @default.
- W2074346324 created "2016-06-24" @default.
- W2074346324 creator A5000903955 @default.
- W2074346324 creator A5019860726 @default.
- W2074346324 creator A5037727253 @default.
- W2074346324 creator A5065588318 @default.
- W2074346324 creator A5078266858 @default.
- W2074346324 date "2013-03-01" @default.
- W2074346324 modified "2023-09-25" @default.
- W2074346324 title "Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach" @default.
- W2074346324 cites W1972843395 @default.
- W2074346324 cites W1974423183 @default.
- W2074346324 cites W1975183682 @default.
- W2074346324 cites W1975839640 @default.
- W2074346324 cites W1996021349 @default.
- W2074346324 cites W1997062200 @default.
- W2074346324 cites W1998300065 @default.
- W2074346324 cites W2000084913 @default.
- W2074346324 cites W2002351729 @default.
- W2074346324 cites W2012027190 @default.
- W2074346324 cites W2012473345 @default.
- W2074346324 cites W2013204779 @default.
- W2074346324 cites W2015964844 @default.
- W2074346324 cites W2017272318 @default.
- W2074346324 cites W2022426423 @default.
- W2074346324 cites W2024638693 @default.
- W2074346324 cites W2024893564 @default.
- W2074346324 cites W2029724692 @default.
- W2074346324 cites W2032923200 @default.
- W2074346324 cites W2035811055 @default.
- W2074346324 cites W2037314715 @default.
- W2074346324 cites W2037460094 @default.
- W2074346324 cites W2037694633 @default.
- W2074346324 cites W2038649869 @default.
- W2074346324 cites W2042985051 @default.
- W2074346324 cites W2045751910 @default.
- W2074346324 cites W2045949158 @default.
- W2074346324 cites W2045971570 @default.
- W2074346324 cites W2051030695 @default.
- W2074346324 cites W2061324056 @default.
- W2074346324 cites W2071256483 @default.
- W2074346324 cites W2082327374 @default.
- W2074346324 cites W2082484980 @default.
- W2074346324 cites W2089305227 @default.
- W2074346324 cites W2090600347 @default.
- W2074346324 cites W2094618865 @default.
- W2074346324 cites W2095547201 @default.
- W2074346324 cites W2099386923 @default.
- W2074346324 cites W2115038213 @default.
- W2074346324 cites W2115961152 @default.
- W2074346324 cites W2117216570 @default.
- W2074346324 cites W2127273537 @default.
- W2074346324 cites W2140628783 @default.
- W2074346324 cites W2142775068 @default.
- W2074346324 cites W2151571212 @default.
- W2074346324 cites W2154250668 @default.
- W2074346324 cites W2222981404 @default.
- W2074346324 cites W3018770027 @default.
- W2074346324 doi "https://doi.org/10.1016/j.geomorph.2013.01.012" @default.
- W2074346324 hasPublicationYear "2013" @default.
- W2074346324 type Work @default.
- W2074346324 sameAs 2074346324 @default.
- W2074346324 citedByCount "69" @default.
- W2074346324 countsByYear W20743463242013 @default.
- W2074346324 countsByYear W20743463242014 @default.
- W2074346324 countsByYear W20743463242015 @default.
- W2074346324 countsByYear W20743463242016 @default.
- W2074346324 countsByYear W20743463242017 @default.
- W2074346324 countsByYear W20743463242018 @default.
- W2074346324 countsByYear W20743463242019 @default.
- W2074346324 countsByYear W20743463242020 @default.
- W2074346324 countsByYear W20743463242021 @default.
- W2074346324 countsByYear W20743463242022 @default.
- W2074346324 countsByYear W20743463242023 @default.
- W2074346324 crossrefType "journal-article" @default.
- W2074346324 hasAuthorship W2074346324A5000903955 @default.
- W2074346324 hasAuthorship W2074346324A5019860726 @default.
- W2074346324 hasAuthorship W2074346324A5037727253 @default.
- W2074346324 hasAuthorship W2074346324A5065588318 @default.
- W2074346324 hasAuthorship W2074346324A5078266858 @default.
- W2074346324 hasConcept C105795698 @default.
- W2074346324 hasConcept C114793014 @default.
- W2074346324 hasConcept C127313418 @default.
- W2074346324 hasConcept C139945424 @default.
- W2074346324 hasConcept C154945302 @default.
- W2074346324 hasConcept C159390177 @default.
- W2074346324 hasConcept C185515318 @default.
- W2074346324 hasConcept C187320778 @default.
- W2074346324 hasConcept C20470049 @default.
- W2074346324 hasConcept C22679943 @default.
- W2074346324 hasConcept C23389524 @default.
- W2074346324 hasConcept C2780092901 @default.
- W2074346324 hasConcept C2816523 @default.
- W2074346324 hasConcept C2993008072 @default.
- W2074346324 hasConcept C33923547 @default.
- W2074346324 hasConcept C41008148 @default.
- W2074346324 hasConcept C47432892 @default.
- W2074346324 hasConcept C65589250 @default.