Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074455057> ?p ?o ?g. }
- W2074455057 endingPage "1456" @default.
- W2074455057 startingPage "1452" @default.
- W2074455057 abstract "Sparse representation has been popular in visual tracking recently for its robustness and accuracy. However, for most conventional sparse coding based trackers, the target candidates are considered independently between consecutive frames. This paper shows that the temporal correlation of these frames can be exploited to improve the performance of tracking and makes the tracker more robust to noise. Furthermore, to improve the tracking speed, we revisit a more efficient method for ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> norm problem, marginal regression, which can solve the sparse coding problem more efficiently. Consequently we can realize real-time tracking based on the temporal smooth sparse representation. Extensive experiments have been done to demonstrate the effectiveness and efficiency of our method." @default.
- W2074455057 created "2016-06-24" @default.
- W2074455057 creator A5012278873 @default.
- W2074455057 creator A5012990960 @default.
- W2074455057 creator A5030921116 @default.
- W2074455057 creator A5057382261 @default.
- W2074455057 date "2015-09-01" @default.
- W2074455057 modified "2023-09-22" @default.
- W2074455057 title "Visual Tracking via Temporally Smooth Sparse Coding" @default.
- W2074455057 cites W1502675477 @default.
- W2074455057 cites W1513768190 @default.
- W2074455057 cites W161114242 @default.
- W2074455057 cites W1667473330 @default.
- W2074455057 cites W1970002489 @default.
- W2074455057 cites W1974978785 @default.
- W2074455057 cites W1981219153 @default.
- W2074455057 cites W1986931325 @default.
- W2074455057 cites W1988689205 @default.
- W2074455057 cites W1995903777 @default.
- W2074455057 cites W1998667615 @default.
- W2074455057 cites W2001785244 @default.
- W2074455057 cites W2016075127 @default.
- W2074455057 cites W2019357592 @default.
- W2074455057 cites W2023640470 @default.
- W2074455057 cites W2027021064 @default.
- W2074455057 cites W2031489346 @default.
- W2074455057 cites W2034276366 @default.
- W2074455057 cites W2048506041 @default.
- W2074455057 cites W2050834445 @default.
- W2074455057 cites W2053744956 @default.
- W2074455057 cites W2063978378 @default.
- W2074455057 cites W2089961441 @default.
- W2074455057 cites W2098854771 @default.
- W2074455057 cites W2102674365 @default.
- W2074455057 cites W2110116545 @default.
- W2074455057 cites W2115318452 @default.
- W2074455057 cites W2121193292 @default.
- W2074455057 cites W2121609805 @default.
- W2074455057 cites W2123361652 @default.
- W2074455057 cites W2132103241 @default.
- W2074455057 cites W2135046866 @default.
- W2074455057 cites W2139047213 @default.
- W2074455057 cites W2147533695 @default.
- W2074455057 cites W2154429285 @default.
- W2074455057 cites W2154560360 @default.
- W2074455057 cites W2162383208 @default.
- W2074455057 cites W2165037244 @default.
- W2074455057 cites W2167153731 @default.
- W2074455057 cites W2986028972 @default.
- W2074455057 doi "https://doi.org/10.1109/lsp.2014.2365363" @default.
- W2074455057 hasPublicationYear "2015" @default.
- W2074455057 type Work @default.
- W2074455057 sameAs 2074455057 @default.
- W2074455057 citedByCount "18" @default.
- W2074455057 countsByYear W20744550572015 @default.
- W2074455057 countsByYear W20744550572016 @default.
- W2074455057 countsByYear W20744550572017 @default.
- W2074455057 countsByYear W20744550572018 @default.
- W2074455057 countsByYear W20744550572019 @default.
- W2074455057 countsByYear W20744550572020 @default.
- W2074455057 countsByYear W20744550572022 @default.
- W2074455057 crossrefType "journal-article" @default.
- W2074455057 hasAuthorship W2074455057A5012278873 @default.
- W2074455057 hasAuthorship W2074455057A5012990960 @default.
- W2074455057 hasAuthorship W2074455057A5030921116 @default.
- W2074455057 hasAuthorship W2074455057A5057382261 @default.
- W2074455057 hasBestOaLocation W20744550572 @default.
- W2074455057 hasConcept C104317684 @default.
- W2074455057 hasConcept C105795698 @default.
- W2074455057 hasConcept C124066611 @default.
- W2074455057 hasConcept C153180895 @default.
- W2074455057 hasConcept C154945302 @default.
- W2074455057 hasConcept C179518139 @default.
- W2074455057 hasConcept C185592680 @default.
- W2074455057 hasConcept C31972630 @default.
- W2074455057 hasConcept C33923547 @default.
- W2074455057 hasConcept C41008148 @default.
- W2074455057 hasConcept C55493867 @default.
- W2074455057 hasConcept C56461940 @default.
- W2074455057 hasConcept C57501372 @default.
- W2074455057 hasConcept C63479239 @default.
- W2074455057 hasConcept C77637269 @default.
- W2074455057 hasConceptScore W2074455057C104317684 @default.
- W2074455057 hasConceptScore W2074455057C105795698 @default.
- W2074455057 hasConceptScore W2074455057C124066611 @default.
- W2074455057 hasConceptScore W2074455057C153180895 @default.
- W2074455057 hasConceptScore W2074455057C154945302 @default.
- W2074455057 hasConceptScore W2074455057C179518139 @default.
- W2074455057 hasConceptScore W2074455057C185592680 @default.
- W2074455057 hasConceptScore W2074455057C31972630 @default.
- W2074455057 hasConceptScore W2074455057C33923547 @default.
- W2074455057 hasConceptScore W2074455057C41008148 @default.
- W2074455057 hasConceptScore W2074455057C55493867 @default.
- W2074455057 hasConceptScore W2074455057C56461940 @default.
- W2074455057 hasConceptScore W2074455057C57501372 @default.
- W2074455057 hasConceptScore W2074455057C63479239 @default.
- W2074455057 hasConceptScore W2074455057C77637269 @default.
- W2074455057 hasIssue "9" @default.