Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074606079> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2074606079 endingPage "3468" @default.
- W2074606079 startingPage "3461" @default.
- W2074606079 abstract "Highlights? We apply neural networks to improve response surface methodology. ? We use simulated annealing algorithm to optimize the RS function obtained by ANN. ? We examine the performance of using neural network in RSM by using three test problems. Response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. The main idea of RSM is to use a set of designed experiments to obtain an optimal response. RSM tries to simplify the original problem through some polynomial estimation over small sections of the feasible area, elaborating on optimum provision through a well known optimization technique, say Gradient Method.As the real world problems are usually very complicated, polynomial estimation may not perform well in providing a good representation of the objective function. Also, the main problem of the Gradient Method, getting trapped in local minimum (maximum), makes RSM at a disadvantage, while defining sub-sections of the feasible area is also a problem faced by analyst.In this article, neural networks are used as a means to improve the estimation in the RSM context. This approach leads to reducing the calculations. Furthermore, it is proposed to use simulated annealing in maximizing the estimated objective function in reaching a suitable point. Three examples of different complexities are solved to shed light on the merits of the proposed method. The comparison results indicate that the proposed algorithm outperforms the classical method." @default.
- W2074606079 created "2016-06-24" @default.
- W2074606079 creator A5012594102 @default.
- W2074606079 creator A5012725274 @default.
- W2074606079 date "2012-02-01" @default.
- W2074606079 modified "2023-10-16" @default.
- W2074606079 title "Improving response surface methodology by using artificial neural network and simulated annealing" @default.
- W2074606079 cites W1966155596 @default.
- W2074606079 cites W1966199221 @default.
- W2074606079 cites W1987393192 @default.
- W2074606079 cites W1994890637 @default.
- W2074606079 cites W2002933080 @default.
- W2074606079 cites W2007981787 @default.
- W2074606079 cites W2024060531 @default.
- W2074606079 cites W2035415157 @default.
- W2074606079 cites W2039270142 @default.
- W2074606079 cites W2088376206 @default.
- W2074606079 cites W2105201601 @default.
- W2074606079 cites W2108715323 @default.
- W2074606079 cites W2146047772 @default.
- W2074606079 doi "https://doi.org/10.1016/j.eswa.2011.09.036" @default.
- W2074606079 hasPublicationYear "2012" @default.
- W2074606079 type Work @default.
- W2074606079 sameAs 2074606079 @default.
- W2074606079 citedByCount "49" @default.
- W2074606079 countsByYear W20746060792012 @default.
- W2074606079 countsByYear W20746060792013 @default.
- W2074606079 countsByYear W20746060792014 @default.
- W2074606079 countsByYear W20746060792015 @default.
- W2074606079 countsByYear W20746060792016 @default.
- W2074606079 countsByYear W20746060792017 @default.
- W2074606079 countsByYear W20746060792018 @default.
- W2074606079 countsByYear W20746060792019 @default.
- W2074606079 countsByYear W20746060792020 @default.
- W2074606079 countsByYear W20746060792021 @default.
- W2074606079 countsByYear W20746060792022 @default.
- W2074606079 countsByYear W20746060792023 @default.
- W2074606079 crossrefType "journal-article" @default.
- W2074606079 hasAuthorship W2074606079A5012594102 @default.
- W2074606079 hasAuthorship W2074606079A5012725274 @default.
- W2074606079 hasConcept C119857082 @default.
- W2074606079 hasConcept C126980161 @default.
- W2074606079 hasConcept C150077022 @default.
- W2074606079 hasConcept C154945302 @default.
- W2074606079 hasConcept C41008148 @default.
- W2074606079 hasConcept C50644808 @default.
- W2074606079 hasConceptScore W2074606079C119857082 @default.
- W2074606079 hasConceptScore W2074606079C126980161 @default.
- W2074606079 hasConceptScore W2074606079C150077022 @default.
- W2074606079 hasConceptScore W2074606079C154945302 @default.
- W2074606079 hasConceptScore W2074606079C41008148 @default.
- W2074606079 hasConceptScore W2074606079C50644808 @default.
- W2074606079 hasIssue "3" @default.
- W2074606079 hasLocation W20746060791 @default.
- W2074606079 hasOpenAccess W2074606079 @default.
- W2074606079 hasPrimaryLocation W20746060791 @default.
- W2074606079 hasRelatedWork W2357518652 @default.
- W2074606079 hasRelatedWork W2386387936 @default.
- W2074606079 hasRelatedWork W2961085424 @default.
- W2074606079 hasRelatedWork W3046775127 @default.
- W2074606079 hasRelatedWork W4205958290 @default.
- W2074606079 hasRelatedWork W4286629047 @default.
- W2074606079 hasRelatedWork W4306321456 @default.
- W2074606079 hasRelatedWork W4306674287 @default.
- W2074606079 hasRelatedWork W1629725936 @default.
- W2074606079 hasRelatedWork W4224009465 @default.
- W2074606079 hasVolume "39" @default.
- W2074606079 isParatext "false" @default.
- W2074606079 isRetracted "false" @default.
- W2074606079 magId "2074606079" @default.
- W2074606079 workType "article" @default.