Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074612074> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2074612074 endingPage "2719" @default.
- W2074612074 startingPage "2701" @default.
- W2074612074 abstract "Feedforward multi-layer perceptrons (MLPs) are valuable modeling tools when considered as non-linear regression technique. MLPs are employed to estimate a priori unknown relationships between a response variable and regressors. Their estimates can serve as a basis for statistical inference. Hypotheses are more substantial and appropriate than those within reach of more traditional methods. This is due to the ability to extract complex non-linear interactive effects. The methodology of drawing valid statistical inference by MLPs in the context of spatially dependent heteroscedastic data is provided. The approach is data-driven and computationally feasible. The appropriateness and suitability of the procedure is demonstrated with an artificial data set and a practical application. Three-layer feedforward networks are applied to approximate the data-generating process. In context of spatially correlated residuals, a suitable statistic is given to test if a specific input variable is predictive of the response variable. Finally, sub-sampling techniques are adopted to arrive at valid statistical conclusions." @default.
- W2074612074 created "2016-06-24" @default.
- W2074612074 creator A5005660483 @default.
- W2074612074 date "2007-02-01" @default.
- W2074612074 modified "2023-09-26" @default.
- W2074612074 title "Valid hypothesis testing in face of spatially dependent data using multi-layer perceptrons and sub-sampling techniques" @default.
- W2074612074 cites W1554663460 @default.
- W2074612074 cites W1970465574 @default.
- W2074612074 cites W1974360228 @default.
- W2074612074 cites W1977391003 @default.
- W2074612074 cites W1981184437 @default.
- W2074612074 cites W2000261301 @default.
- W2074612074 cites W2022583430 @default.
- W2074612074 cites W2028226037 @default.
- W2074612074 cites W2029367447 @default.
- W2074612074 cites W2047670349 @default.
- W2074612074 cites W2055000402 @default.
- W2074612074 cites W2059047279 @default.
- W2074612074 cites W2063199553 @default.
- W2074612074 cites W2064357387 @default.
- W2074612074 cites W2071307652 @default.
- W2074612074 cites W2074437904 @default.
- W2074612074 cites W2078567926 @default.
- W2074612074 cites W2091020207 @default.
- W2074612074 cites W2104556565 @default.
- W2074612074 cites W2108959409 @default.
- W2074612074 cites W2112330009 @default.
- W2074612074 cites W2115472170 @default.
- W2074612074 cites W2122643824 @default.
- W2074612074 cites W2130152419 @default.
- W2074612074 cites W2135234591 @default.
- W2074612074 cites W2137983211 @default.
- W2074612074 cites W2142635246 @default.
- W2074612074 cites W2168175751 @default.
- W2074612074 cites W2325530759 @default.
- W2074612074 cites W2512081857 @default.
- W2074612074 cites W2797021786 @default.
- W2074612074 cites W3146803896 @default.
- W2074612074 cites W653501263 @default.
- W2074612074 doi "https://doi.org/10.1016/j.csda.2006.01.010" @default.
- W2074612074 hasPublicationYear "2007" @default.
- W2074612074 type Work @default.
- W2074612074 sameAs 2074612074 @default.
- W2074612074 citedByCount "1" @default.
- W2074612074 crossrefType "journal-article" @default.
- W2074612074 hasAuthorship W2074612074A5005660483 @default.
- W2074612074 hasConcept C105795698 @default.
- W2074612074 hasConcept C106131492 @default.
- W2074612074 hasConcept C140779682 @default.
- W2074612074 hasConcept C153180895 @default.
- W2074612074 hasConcept C154945302 @default.
- W2074612074 hasConcept C178790620 @default.
- W2074612074 hasConcept C185592680 @default.
- W2074612074 hasConcept C2779227376 @default.
- W2074612074 hasConcept C31972630 @default.
- W2074612074 hasConcept C33923547 @default.
- W2074612074 hasConcept C41008148 @default.
- W2074612074 hasConcept C50644808 @default.
- W2074612074 hasConcept C60908668 @default.
- W2074612074 hasConcept C87007009 @default.
- W2074612074 hasConceptScore W2074612074C105795698 @default.
- W2074612074 hasConceptScore W2074612074C106131492 @default.
- W2074612074 hasConceptScore W2074612074C140779682 @default.
- W2074612074 hasConceptScore W2074612074C153180895 @default.
- W2074612074 hasConceptScore W2074612074C154945302 @default.
- W2074612074 hasConceptScore W2074612074C178790620 @default.
- W2074612074 hasConceptScore W2074612074C185592680 @default.
- W2074612074 hasConceptScore W2074612074C2779227376 @default.
- W2074612074 hasConceptScore W2074612074C31972630 @default.
- W2074612074 hasConceptScore W2074612074C33923547 @default.
- W2074612074 hasConceptScore W2074612074C41008148 @default.
- W2074612074 hasConceptScore W2074612074C50644808 @default.
- W2074612074 hasConceptScore W2074612074C60908668 @default.
- W2074612074 hasConceptScore W2074612074C87007009 @default.
- W2074612074 hasIssue "5" @default.
- W2074612074 hasLocation W20746120741 @default.
- W2074612074 hasOpenAccess W2074612074 @default.
- W2074612074 hasPrimaryLocation W20746120741 @default.
- W2074612074 hasRelatedWork W1902766772 @default.
- W2074612074 hasRelatedWork W2073219746 @default.
- W2074612074 hasRelatedWork W2078674814 @default.
- W2074612074 hasRelatedWork W2203557590 @default.
- W2074612074 hasRelatedWork W2338394561 @default.
- W2074612074 hasRelatedWork W2405544437 @default.
- W2074612074 hasRelatedWork W3021094884 @default.
- W2074612074 hasRelatedWork W3106494386 @default.
- W2074612074 hasRelatedWork W4220672327 @default.
- W2074612074 hasRelatedWork W4221160179 @default.
- W2074612074 hasVolume "51" @default.
- W2074612074 isParatext "false" @default.
- W2074612074 isRetracted "false" @default.
- W2074612074 magId "2074612074" @default.
- W2074612074 workType "article" @default.