Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074613852> ?p ?o ?g. }
- W2074613852 abstract "A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters [“The length-scale distribution function of the distance between extremal points in passive scalar turbulence,” J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, “Length-scale distribution functions and conditional means for various fields in turbulence,” J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u′, v′, and w′ and the instantaneous kinetic energy k′, respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters [“The length-scale distribution function of the distance between extremal points in passive scalar turbulence,” J. Fluid Mech. 554, 457 (2006); “Length-scale distribution functions and conditional means for various fields in turbulence,” J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf’s of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length." @default.
- W2074613852 created "2016-06-24" @default.
- W2074613852 creator A5010228512 @default.
- W2074613852 creator A5030386608 @default.
- W2074613852 creator A5043578209 @default.
- W2074613852 creator A5071117743 @default.
- W2074613852 date "2011-03-01" @default.
- W2074613852 modified "2023-10-01" @default.
- W2074613852 title "Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry" @default.
- W2074613852 cites W1565256545 @default.
- W2074613852 cites W1644919407 @default.
- W2074613852 cites W1671242952 @default.
- W2074613852 cites W1965676217 @default.
- W2074613852 cites W1969658089 @default.
- W2074613852 cites W1972679781 @default.
- W2074613852 cites W1984645605 @default.
- W2074613852 cites W1994976874 @default.
- W2074613852 cites W1997438273 @default.
- W2074613852 cites W2000415346 @default.
- W2074613852 cites W2001382519 @default.
- W2074613852 cites W2004210738 @default.
- W2074613852 cites W2008531424 @default.
- W2074613852 cites W2009793402 @default.
- W2074613852 cites W2027830790 @default.
- W2074613852 cites W2034368317 @default.
- W2074613852 cites W2039205768 @default.
- W2074613852 cites W2048512211 @default.
- W2074613852 cites W2075417558 @default.
- W2074613852 cites W2080824940 @default.
- W2074613852 cites W2088635576 @default.
- W2074613852 cites W2093049767 @default.
- W2074613852 cites W2102288689 @default.
- W2074613852 cites W2160092186 @default.
- W2074613852 cites W2564800775 @default.
- W2074613852 cites W3047299981 @default.
- W2074613852 doi "https://doi.org/10.1063/1.3556742" @default.
- W2074613852 hasPublicationYear "2011" @default.
- W2074613852 type Work @default.
- W2074613852 sameAs 2074613852 @default.
- W2074613852 citedByCount "27" @default.
- W2074613852 countsByYear W20746138522012 @default.
- W2074613852 countsByYear W20746138522013 @default.
- W2074613852 countsByYear W20746138522014 @default.
- W2074613852 countsByYear W20746138522015 @default.
- W2074613852 countsByYear W20746138522017 @default.
- W2074613852 countsByYear W20746138522019 @default.
- W2074613852 countsByYear W20746138522020 @default.
- W2074613852 countsByYear W20746138522022 @default.
- W2074613852 countsByYear W20746138522023 @default.
- W2074613852 crossrefType "journal-article" @default.
- W2074613852 hasAuthorship W2074613852A5010228512 @default.
- W2074613852 hasAuthorship W2074613852A5030386608 @default.
- W2074613852 hasAuthorship W2074613852A5043578209 @default.
- W2074613852 hasAuthorship W2074613852A5071117743 @default.
- W2074613852 hasConcept C110521144 @default.
- W2074613852 hasConcept C121332964 @default.
- W2074613852 hasConcept C135402231 @default.
- W2074613852 hasConcept C136590016 @default.
- W2074613852 hasConcept C15476950 @default.
- W2074613852 hasConcept C180925781 @default.
- W2074613852 hasConcept C182748727 @default.
- W2074613852 hasConcept C196558001 @default.
- W2074613852 hasConcept C207857233 @default.
- W2074613852 hasConcept C2524010 @default.
- W2074613852 hasConcept C33923547 @default.
- W2074613852 hasConcept C57691317 @default.
- W2074613852 hasConcept C57879066 @default.
- W2074613852 hasConcept C74650414 @default.
- W2074613852 hasConcept C91331278 @default.
- W2074613852 hasConcept C97355855 @default.
- W2074613852 hasConceptScore W2074613852C110521144 @default.
- W2074613852 hasConceptScore W2074613852C121332964 @default.
- W2074613852 hasConceptScore W2074613852C135402231 @default.
- W2074613852 hasConceptScore W2074613852C136590016 @default.
- W2074613852 hasConceptScore W2074613852C15476950 @default.
- W2074613852 hasConceptScore W2074613852C180925781 @default.
- W2074613852 hasConceptScore W2074613852C182748727 @default.
- W2074613852 hasConceptScore W2074613852C196558001 @default.
- W2074613852 hasConceptScore W2074613852C207857233 @default.
- W2074613852 hasConceptScore W2074613852C2524010 @default.
- W2074613852 hasConceptScore W2074613852C33923547 @default.
- W2074613852 hasConceptScore W2074613852C57691317 @default.
- W2074613852 hasConceptScore W2074613852C57879066 @default.
- W2074613852 hasConceptScore W2074613852C74650414 @default.
- W2074613852 hasConceptScore W2074613852C91331278 @default.
- W2074613852 hasConceptScore W2074613852C97355855 @default.
- W2074613852 hasFunder F4320320879 @default.
- W2074613852 hasIssue "3" @default.
- W2074613852 hasLocation W20746138521 @default.
- W2074613852 hasOpenAccess W2074613852 @default.
- W2074613852 hasPrimaryLocation W20746138521 @default.
- W2074613852 hasRelatedWork W1999233350 @default.
- W2074613852 hasRelatedWork W2007864183 @default.
- W2074613852 hasRelatedWork W2019292991 @default.
- W2074613852 hasRelatedWork W2041328019 @default.
- W2074613852 hasRelatedWork W2070980289 @default.
- W2074613852 hasRelatedWork W2086403150 @default.
- W2074613852 hasRelatedWork W2091951296 @default.
- W2074613852 hasRelatedWork W2160729968 @default.
- W2074613852 hasRelatedWork W2362095007 @default.