Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074638406> ?p ?o ?g. }
- W2074638406 endingPage "1371" @default.
- W2074638406 startingPage "1356" @default.
- W2074638406 abstract "One of the most important elements of social network analysis is community detection, i.e., finding groups of similar people based on their traits. In this paper, we present the fuzzy modularity maximization (FMM) approach for community detection, which finds overlapping - that is, fuzzy - communities (where appropriate) by maximizing a generalized form of Newman's modularity. The first proposed FMM solution uses a tree-based structure to find a globally optimal solution, while the second proposed solution uses alternating optimization to efficiently search for a locally optimal solution. Both of these approaches are based on a proposed algorithm called one-step modularity maximization (OSMM), which computes the optimal cluster memberships for one person in the social network. We prove that OSMM can be formulated as a simplified quadratic knapsack optimization problem, which is O(n) time complexity. We then propose a tree-based algorithm, called FMM/Find Best Leaf Node (FMM/FBLN), which represents sequences of OSMM steps in a tree-based structure. It is proved that FMM/FBLN finds globally optimal solutions for FMM; however, the time complexity of FMM/FBLN is O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>d</sup> ), d ≥ 2; thus, it is impractical for most real-world networks. To combat this inefficiency, we propose five heuristic-based alternating optimization schemes, i.e., FMM/H1-H5, which are all shown to be O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ) time complexity. We compare the results of the FMM/H solutions with those of state-of-the-art community detection algorithms, MULTICUT spectral FCM (MSFCM) and GALS, and with those of two fuzzy community detection algorithms called GA and vertex-similarity based gradient-descent method (VSGD) on ten real-world datasets. We conclude that one of the five heuristic algorithms (FMM/H2) is very competitive with GALS and much more effective than MSFCM, GA, and VSGD. Furthermore, all of the FMM/H schemes are at least two orders of magnitude faster than GALS in run time. Finally, FMM/H, unlike GALS (which only produces crisp partitions) and MSFCM (which always finds fuzzy partitions), is the only fuzzy community detection algorithm to date that can find the max-modularity partition, fuzzy or crisp." @default.
- W2074638406 created "2016-06-24" @default.
- W2074638406 creator A5018866702 @default.
- W2074638406 creator A5060923133 @default.
- W2074638406 date "2015-10-01" @default.
- W2074638406 modified "2023-09-23" @default.
- W2074638406 title "Quadratic Program-Based Modularity Maximization for Fuzzy Community Detection in Social Networks" @default.
- W2074638406 cites W1491635691 @default.
- W2074638406 cites W1508853606 @default.
- W2074638406 cites W1971421925 @default.
- W2074638406 cites W1978119584 @default.
- W2074638406 cites W1985625141 @default.
- W2074638406 cites W1993200481 @default.
- W2074638406 cites W2015953751 @default.
- W2074638406 cites W2020323825 @default.
- W2074638406 cites W2042276255 @default.
- W2074638406 cites W2044061073 @default.
- W2074638406 cites W2044719661 @default.
- W2074638406 cites W2044783742 @default.
- W2074638406 cites W2045971059 @default.
- W2074638406 cites W2050095729 @default.
- W2074638406 cites W2061211758 @default.
- W2074638406 cites W2075023395 @default.
- W2074638406 cites W2094234423 @default.
- W2074638406 cites W2095293504 @default.
- W2074638406 cites W2105201056 @default.
- W2074638406 cites W2119669490 @default.
- W2074638406 cites W2120698362 @default.
- W2074638406 cites W2127048411 @default.
- W2074638406 cites W2131681506 @default.
- W2074638406 cites W2142170653 @default.
- W2074638406 cites W2155167324 @default.
- W2074638406 cites W2165452678 @default.
- W2074638406 cites W3098935589 @default.
- W2074638406 cites W3100069540 @default.
- W2074638406 cites W3101413764 @default.
- W2074638406 cites W3105411815 @default.
- W2074638406 cites W4292081303 @default.
- W2074638406 cites W80507587 @default.
- W2074638406 doi "https://doi.org/10.1109/tfuzz.2014.2360723" @default.
- W2074638406 hasPublicationYear "2015" @default.
- W2074638406 type Work @default.
- W2074638406 sameAs 2074638406 @default.
- W2074638406 citedByCount "36" @default.
- W2074638406 countsByYear W20746384062016 @default.
- W2074638406 countsByYear W20746384062017 @default.
- W2074638406 countsByYear W20746384062018 @default.
- W2074638406 countsByYear W20746384062019 @default.
- W2074638406 countsByYear W20746384062020 @default.
- W2074638406 countsByYear W20746384062021 @default.
- W2074638406 countsByYear W20746384062022 @default.
- W2074638406 countsByYear W20746384062023 @default.
- W2074638406 crossrefType "journal-article" @default.
- W2074638406 hasAuthorship W2074638406A5018866702 @default.
- W2074638406 hasAuthorship W2074638406A5060923133 @default.
- W2074638406 hasConcept C113138325 @default.
- W2074638406 hasConcept C113174947 @default.
- W2074638406 hasConcept C114614502 @default.
- W2074638406 hasConcept C126255220 @default.
- W2074638406 hasConcept C154945302 @default.
- W2074638406 hasConcept C173801870 @default.
- W2074638406 hasConcept C2776330181 @default.
- W2074638406 hasConcept C2779478453 @default.
- W2074638406 hasConcept C33923547 @default.
- W2074638406 hasConcept C41008148 @default.
- W2074638406 hasConcept C54355233 @default.
- W2074638406 hasConcept C58166 @default.
- W2074638406 hasConcept C86803240 @default.
- W2074638406 hasConceptScore W2074638406C113138325 @default.
- W2074638406 hasConceptScore W2074638406C113174947 @default.
- W2074638406 hasConceptScore W2074638406C114614502 @default.
- W2074638406 hasConceptScore W2074638406C126255220 @default.
- W2074638406 hasConceptScore W2074638406C154945302 @default.
- W2074638406 hasConceptScore W2074638406C173801870 @default.
- W2074638406 hasConceptScore W2074638406C2776330181 @default.
- W2074638406 hasConceptScore W2074638406C2779478453 @default.
- W2074638406 hasConceptScore W2074638406C33923547 @default.
- W2074638406 hasConceptScore W2074638406C41008148 @default.
- W2074638406 hasConceptScore W2074638406C54355233 @default.
- W2074638406 hasConceptScore W2074638406C58166 @default.
- W2074638406 hasConceptScore W2074638406C86803240 @default.
- W2074638406 hasIssue "5" @default.
- W2074638406 hasLocation W20746384061 @default.
- W2074638406 hasOpenAccess W2074638406 @default.
- W2074638406 hasPrimaryLocation W20746384061 @default.
- W2074638406 hasRelatedWork W114533130 @default.
- W2074638406 hasRelatedWork W1523336140 @default.
- W2074638406 hasRelatedWork W1994451098 @default.
- W2074638406 hasRelatedWork W1994780801 @default.
- W2074638406 hasRelatedWork W1998250942 @default.
- W2074638406 hasRelatedWork W2102019950 @default.
- W2074638406 hasRelatedWork W2105339579 @default.
- W2074638406 hasRelatedWork W2171682893 @default.
- W2074638406 hasRelatedWork W3211070755 @default.
- W2074638406 hasRelatedWork W4213209435 @default.
- W2074638406 hasVolume "23" @default.
- W2074638406 isParatext "false" @default.
- W2074638406 isRetracted "false" @default.