Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074650057> ?p ?o ?g. }
- W2074650057 endingPage "347" @default.
- W2074650057 startingPage "337" @default.
- W2074650057 abstract "The trace elements of high-Mg carbonatitic high-density fluids (HDFs) trapped in six fibrous diamonds from Siberia exhibit patterns that are highly similar to those of Group I kimberlites, but are slightly more fractionated. The patterns of both are similar to the average pattern of post-Archaean xenoliths from the sub-continental lithospheric mantle (SCLM). The Siberian high-Mg carbonatitic HDFs are highly enriched in incompatible elements and have compositions comparable to those of high-Mg HDFs from Kankan, Guinea. However, in detail the latter show depletion of K, Rb, Cs, Nb and Ta and enrichment in Ba, Th, U and LREE relative to the Siberian HDFs. These differences correspond closely to those between the patterns of Group II and Group I kimberlites, respectively. Mixing, fractionation and melting were explored as possible scenarios to explain these similarities and to constrain the possible genetic relationships between HDFs, kimberlites and the SCLM. Addition of 2.5% of Group I kimberlitic magma or 0.5% of the Udachnaya high-Mg HDFs to a depleted peridotite closely reproduces the post-Archaean SCLM pattern. The formation of high-Mg HDFs through fractionation of kimberlitic magma calls for 80% crystallization of olivine, clinopyroxene, garnet, carbonate and ilmenite. However, mismatches in K, Rb, Y and Ho abundances, and absence of the postulated fractionating minerals as inclusions suggest other petrogenetic scenarios are more likely. High-Mg HDFs and kimberlites can be produced by melting of a common source. The pattern of the calculated source for Siberian HDF and Group I kimberlites resembles that of average post-Archean, rather than Archean, SCLM. Batch melting of such a source can produce high-Mg HDFs at 0.5% partial melting and Group I kimberlites at ~ 2%. Kankan HDFs and Group II kimberlites can be produced by 0.1 and 0.8% melting of average Archaean SCLM that carries phlogopite ± Fe–Ti oxides. The close correspondence between the trace-element composition of surface kimberlites and HDFs that were trapped at depth indicates that kimberlitic melts do not change their incompatible trace element contents much on their way to the surface (except for a possible loss of alkalis). The new data on the HDFs suggest a close genetic relation between high-Mg carbonatitic HDFs and kimberlites and reveals the similarity of the trace element of both to that of the post-Archaean SCLM. This similarity may reflect the interaction of such melts with the lithospheric keel, its melting to produce HDF and/or kimberlites or melting of deeper sources that led to formation of HDFs and kimberlite and to widespread metasomatism of the SCLM." @default.
- W2074650057 created "2016-06-24" @default.
- W2074650057 creator A5003159127 @default.
- W2074650057 creator A5053638991 @default.
- W2074650057 creator A5056410545 @default.
- W2074650057 creator A5079364492 @default.
- W2074650057 date "2011-09-01" @default.
- W2074650057 modified "2023-10-13" @default.
- W2074650057 title "High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere" @default.
- W2074650057 cites W1534749586 @default.
- W2074650057 cites W1593193933 @default.
- W2074650057 cites W1965681025 @default.
- W2074650057 cites W1966271824 @default.
- W2074650057 cites W1966278336 @default.
- W2074650057 cites W1969859799 @default.
- W2074650057 cites W1971493152 @default.
- W2074650057 cites W1972910995 @default.
- W2074650057 cites W1979335327 @default.
- W2074650057 cites W1979966408 @default.
- W2074650057 cites W1988551198 @default.
- W2074650057 cites W1992886136 @default.
- W2074650057 cites W1999778340 @default.
- W2074650057 cites W1999961309 @default.
- W2074650057 cites W2009208780 @default.
- W2074650057 cites W2011135502 @default.
- W2074650057 cites W2011482531 @default.
- W2074650057 cites W2012928211 @default.
- W2074650057 cites W2013593997 @default.
- W2074650057 cites W2014828526 @default.
- W2074650057 cites W2014988054 @default.
- W2074650057 cites W2030433511 @default.
- W2074650057 cites W2030618426 @default.
- W2074650057 cites W2034632918 @default.
- W2074650057 cites W2037895754 @default.
- W2074650057 cites W2040945066 @default.
- W2074650057 cites W2042813286 @default.
- W2074650057 cites W2044625514 @default.
- W2074650057 cites W2051273227 @default.
- W2074650057 cites W2052416404 @default.
- W2074650057 cites W2055106424 @default.
- W2074650057 cites W2068284041 @default.
- W2074650057 cites W2068725010 @default.
- W2074650057 cites W2070412101 @default.
- W2074650057 cites W2070701039 @default.
- W2074650057 cites W2074073629 @default.
- W2074650057 cites W2074099721 @default.
- W2074650057 cites W2075209961 @default.
- W2074650057 cites W2076993140 @default.
- W2074650057 cites W2079091258 @default.
- W2074650057 cites W2081221388 @default.
- W2074650057 cites W2083569297 @default.
- W2074650057 cites W2086070454 @default.
- W2074650057 cites W2086595032 @default.
- W2074650057 cites W2089106899 @default.
- W2074650057 cites W2090194751 @default.
- W2074650057 cites W2092526248 @default.
- W2074650057 cites W2096956171 @default.
- W2074650057 cites W2102135707 @default.
- W2074650057 cites W2103527049 @default.
- W2074650057 cites W2110725824 @default.
- W2074650057 cites W2113070569 @default.
- W2074650057 cites W2122197016 @default.
- W2074650057 cites W2124187529 @default.
- W2074650057 cites W2136073038 @default.
- W2074650057 cites W2138093481 @default.
- W2074650057 cites W2138106109 @default.
- W2074650057 cites W2140478491 @default.
- W2074650057 cites W2146897595 @default.
- W2074650057 cites W2152550713 @default.
- W2074650057 cites W2159561320 @default.
- W2074650057 cites W2164986060 @default.
- W2074650057 cites W2314681610 @default.
- W2074650057 cites W4255507711 @default.
- W2074650057 doi "https://doi.org/10.1016/j.epsl.2011.07.012" @default.
- W2074650057 hasPublicationYear "2011" @default.
- W2074650057 type Work @default.
- W2074650057 sameAs 2074650057 @default.
- W2074650057 citedByCount "58" @default.
- W2074650057 countsByYear W20746500572012 @default.
- W2074650057 countsByYear W20746500572013 @default.
- W2074650057 countsByYear W20746500572014 @default.
- W2074650057 countsByYear W20746500572015 @default.
- W2074650057 countsByYear W20746500572016 @default.
- W2074650057 countsByYear W20746500572017 @default.
- W2074650057 countsByYear W20746500572018 @default.
- W2074650057 countsByYear W20746500572019 @default.
- W2074650057 countsByYear W20746500572020 @default.
- W2074650057 countsByYear W20746500572021 @default.
- W2074650057 countsByYear W20746500572022 @default.
- W2074650057 countsByYear W20746500572023 @default.
- W2074650057 crossrefType "journal-article" @default.
- W2074650057 hasAuthorship W2074650057A5003159127 @default.
- W2074650057 hasAuthorship W2074650057A5053638991 @default.
- W2074650057 hasAuthorship W2074650057A5056410545 @default.
- W2074650057 hasAuthorship W2074650057A5079364492 @default.
- W2074650057 hasConcept C127313418 @default.
- W2074650057 hasConcept C149347711 @default.
- W2074650057 hasConcept C151730666 @default.