Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074686342> ?p ?o ?g. }
- W2074686342 endingPage "1902" @default.
- W2074686342 startingPage "1862" @default.
- W2074686342 abstract "We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen-Loeve expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data." @default.
- W2074686342 created "2016-06-24" @default.
- W2074686342 creator A5071702167 @default.
- W2074686342 creator A5075501406 @default.
- W2074686342 date "2009-04-01" @default.
- W2074686342 modified "2023-10-06" @default.
- W2074686342 title "Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems" @default.
- W2074686342 cites W1536497620 @default.
- W2074686342 cites W1615993661 @default.
- W2074686342 cites W1633869374 @default.
- W2074686342 cites W1815314920 @default.
- W2074686342 cites W1966775587 @default.
- W2074686342 cites W1973333099 @default.
- W2074686342 cites W1983156129 @default.
- W2074686342 cites W1985001566 @default.
- W2074686342 cites W1985012042 @default.
- W2074686342 cites W1986280275 @default.
- W2074686342 cites W1992851587 @default.
- W2074686342 cites W1994005439 @default.
- W2074686342 cites W1995938050 @default.
- W2074686342 cites W2000688949 @default.
- W2074686342 cites W2002355073 @default.
- W2074686342 cites W2004515370 @default.
- W2074686342 cites W2011161612 @default.
- W2074686342 cites W2011350300 @default.
- W2074686342 cites W2017880874 @default.
- W2074686342 cites W2018159038 @default.
- W2074686342 cites W2024825926 @default.
- W2074686342 cites W2027547498 @default.
- W2074686342 cites W2033721384 @default.
- W2074686342 cites W2034762535 @default.
- W2074686342 cites W2042770989 @default.
- W2074686342 cites W2048399845 @default.
- W2074686342 cites W2055081012 @default.
- W2074686342 cites W2064332562 @default.
- W2074686342 cites W2071809913 @default.
- W2074686342 cites W2074695760 @default.
- W2074686342 cites W2075498338 @default.
- W2074686342 cites W2081774672 @default.
- W2074686342 cites W2086975931 @default.
- W2074686342 cites W2089770162 @default.
- W2074686342 cites W2105596596 @default.
- W2074686342 cites W2112823474 @default.
- W2074686342 cites W2113517083 @default.
- W2074686342 cites W2116723448 @default.
- W2074686342 cites W2118587791 @default.
- W2074686342 cites W2120786862 @default.
- W2074686342 cites W2126453481 @default.
- W2074686342 cites W2133904291 @default.
- W2074686342 cites W2139798157 @default.
- W2074686342 cites W2141394518 @default.
- W2074686342 cites W2143591652 @default.
- W2074686342 cites W2144144515 @default.
- W2074686342 cites W2152415136 @default.
- W2074686342 cites W2167720109 @default.
- W2074686342 cites W2321957512 @default.
- W2074686342 cites W2332771484 @default.
- W2074686342 cites W3100950630 @default.
- W2074686342 cites W4230320149 @default.
- W2074686342 doi "https://doi.org/10.1016/j.jcp.2008.11.024" @default.
- W2074686342 hasPublicationYear "2009" @default.
- W2074686342 type Work @default.
- W2074686342 sameAs 2074686342 @default.
- W2074686342 citedByCount "345" @default.
- W2074686342 countsByYear W20746863422012 @default.
- W2074686342 countsByYear W20746863422013 @default.
- W2074686342 countsByYear W20746863422014 @default.
- W2074686342 countsByYear W20746863422015 @default.
- W2074686342 countsByYear W20746863422016 @default.
- W2074686342 countsByYear W20746863422017 @default.
- W2074686342 countsByYear W20746863422018 @default.
- W2074686342 countsByYear W20746863422019 @default.
- W2074686342 countsByYear W20746863422020 @default.
- W2074686342 countsByYear W20746863422021 @default.
- W2074686342 countsByYear W20746863422022 @default.
- W2074686342 countsByYear W20746863422023 @default.
- W2074686342 crossrefType "journal-article" @default.
- W2074686342 hasAuthorship W2074686342A5071702167 @default.
- W2074686342 hasAuthorship W2074686342A5075501406 @default.
- W2074686342 hasBestOaLocation W20746863422 @default.
- W2074686342 hasConcept C105795698 @default.
- W2074686342 hasConcept C107673813 @default.
- W2074686342 hasConcept C111030470 @default.
- W2074686342 hasConcept C111335779 @default.
- W2074686342 hasConcept C11413529 @default.
- W2074686342 hasConcept C117896860 @default.
- W2074686342 hasConcept C121332964 @default.
- W2074686342 hasConcept C126255220 @default.
- W2074686342 hasConcept C134306372 @default.
- W2074686342 hasConcept C135252773 @default.
- W2074686342 hasConcept C154945302 @default.
- W2074686342 hasConcept C160234255 @default.
- W2074686342 hasConcept C19499675 @default.
- W2074686342 hasConcept C197656079 @default.
- W2074686342 hasConcept C207467116 @default.
- W2074686342 hasConcept C2524010 @default.
- W2074686342 hasConcept C2776214188 @default.
- W2074686342 hasConcept C2779374083 @default.