Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074826940> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2074826940 abstract "Over the last 10 years, scientists at the Thomas M. Brooks Forest Products Center, the Bradley Department of Electrical and Computer Engineering, and the USDA Forest Service have been working on lumber scanning systems that can accurately locate and identify defects in hardwood lumber. Current R&D efforts are targeted toward developing automated lumber grading technologies. The objective of this work is to evaluate hardwood lumber grading accuracy based on current state-of-the-art multiple sensor scanning technology, which uses laser profile detectors, color cameras, and an X-ray scanner. Eighty-nine red oak boards were scanned and graded using Virginia Tech's multiple sensor scanning system. The same boards were also manually graded on a normal production line. Precise board grade was determined by manually digitizing the boards for actual board defects. A certified National Hardwood Lumber Association (NHLA) employed lumber inspector then graded the lumber to establish a certified market value of the lumber. The lumber grading system was found to be 63% accurate in classifying board grade on a board-by-board basis. While this accuracy may seem low, the automated lumber grading system was found to be 31% more accurate than the line graders, which were found to be 48% accurate. Further, the automated lumber grading system estimated lumber value to within less than 6% of the NHLA certified value, whereas the line grader overestimated the lumber value by close to 20%. Most automated lumber grading discrepancies resulted from board geometry related issues (e.g. board crook, surface measure rounding, calculation of cutting units, etc.). Concerning the multiple sensor scanning system, defect recognition improvements should focus on better methods to differentiate surface discoloration from critical grading defects. These results will help guide the development of future scanning hardware and image processing software to more accurately identify lumber grading features." @default.
- W2074826940 created "2016-06-24" @default.
- W2074826940 creator A5037552432 @default.
- W2074826940 creator A5059843006 @default.
- W2074826940 creator A5077278626 @default.
- W2074826940 date "2003-12-01" @default.
- W2074826940 modified "2023-09-25" @default.
- W2074826940 title "Automated hardwood lumber grading utilizing a multiple sensor machine vision technology" @default.
- W2074826940 cites W2037197379 @default.
- W2074826940 cites W2069163425 @default.
- W2074826940 cites W2092873903 @default.
- W2074826940 cites W295594424 @default.
- W2074826940 cites W400801839 @default.
- W2074826940 doi "https://doi.org/10.1016/s0168-1699(03)00048-6" @default.
- W2074826940 hasPublicationYear "2003" @default.
- W2074826940 type Work @default.
- W2074826940 sameAs 2074826940 @default.
- W2074826940 citedByCount "27" @default.
- W2074826940 countsByYear W20748269402013 @default.
- W2074826940 countsByYear W20748269402014 @default.
- W2074826940 countsByYear W20748269402015 @default.
- W2074826940 countsByYear W20748269402016 @default.
- W2074826940 countsByYear W20748269402017 @default.
- W2074826940 countsByYear W20748269402018 @default.
- W2074826940 countsByYear W20748269402019 @default.
- W2074826940 countsByYear W20748269402021 @default.
- W2074826940 countsByYear W20748269402023 @default.
- W2074826940 crossrefType "journal-article" @default.
- W2074826940 hasAuthorship W2074826940A5037552432 @default.
- W2074826940 hasAuthorship W2074826940A5059843006 @default.
- W2074826940 hasAuthorship W2074826940A5077278626 @default.
- W2074826940 hasConcept C127413603 @default.
- W2074826940 hasConcept C147176958 @default.
- W2074826940 hasConcept C18903297 @default.
- W2074826940 hasConcept C199639397 @default.
- W2074826940 hasConcept C205649164 @default.
- W2074826940 hasConcept C2777286243 @default.
- W2074826940 hasConcept C2778348119 @default.
- W2074826940 hasConcept C2780674770 @default.
- W2074826940 hasConcept C86803240 @default.
- W2074826940 hasConcept C97137747 @default.
- W2074826940 hasConceptScore W2074826940C127413603 @default.
- W2074826940 hasConceptScore W2074826940C147176958 @default.
- W2074826940 hasConceptScore W2074826940C18903297 @default.
- W2074826940 hasConceptScore W2074826940C199639397 @default.
- W2074826940 hasConceptScore W2074826940C205649164 @default.
- W2074826940 hasConceptScore W2074826940C2777286243 @default.
- W2074826940 hasConceptScore W2074826940C2778348119 @default.
- W2074826940 hasConceptScore W2074826940C2780674770 @default.
- W2074826940 hasConceptScore W2074826940C86803240 @default.
- W2074826940 hasConceptScore W2074826940C97137747 @default.
- W2074826940 hasLocation W20748269401 @default.
- W2074826940 hasOpenAccess W2074826940 @default.
- W2074826940 hasPrimaryLocation W20748269401 @default.
- W2074826940 hasRelatedWork W1671651577 @default.
- W2074826940 hasRelatedWork W1814066406 @default.
- W2074826940 hasRelatedWork W1963914848 @default.
- W2074826940 hasRelatedWork W2031620013 @default.
- W2074826940 hasRelatedWork W2087929024 @default.
- W2074826940 hasRelatedWork W2355457120 @default.
- W2074826940 hasRelatedWork W2383067757 @default.
- W2074826940 hasRelatedWork W2948613463 @default.
- W2074826940 hasRelatedWork W3129181224 @default.
- W2074826940 hasRelatedWork W3216143833 @default.
- W2074826940 isParatext "false" @default.
- W2074826940 isRetracted "false" @default.
- W2074826940 magId "2074826940" @default.
- W2074826940 workType "article" @default.